Skip to main content

Gibberellins: perception, transduction and responses

  • Chapter
Signals and Signal Transduction Pathways in Plants

Abstract

Gibberellins (GAs) are a class of plant hormones that exert profound and diverse effects on plant growth and development. The chemistry and metabolism of GAs have been studied for several decades and this has led to a detailed understanding of the pathways involved in their biosynthesis and catabolism. Attempts to understand the perception and mechanism of action of GAs have been based heavily on studies with the cereal aleurone as a model system and have drawn extensively on parallels with the molecular mechanism of action of mammalian steroid hormones. During the past few years, the established view of GA-perception has been challenged and new techniques for identifying GA receptors have been developed. As our understanding of GA-regulated events in aleurone cells has advanced through molecular and cell biology approaches, other GA-responsive plant tissues have also proved to be tractible for studying GA-action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson BE, Ward JM, Schroeder JI: Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiol 104: 1177–1183 (1994).

    PubMed  CAS  Google Scholar 

  2. Appleford NEJ, Lenton JR: Gibberellins and leaf expansion in near-isogenic wheat lines containing Rht1 and Rht3 dwarfing alleles. Planta 183: 229–236 (1991).

    CAS  Google Scholar 

  3. Arnalte M-E, Cornejo M-J, Bush DS, Jones RL: Gibberellic acid stimulates lipid metabolism in barley aleurone protoplasts. Plant Sci 77: 223–232 (1991).

    CAS  Google Scholar 

  4. Ballas N, Wong L-M, Theologis A: Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisurn sativum). J Mol Biol 233: 580–596 (1994).

    Google Scholar 

  5. Baluska F, Parker JS, Barlow PW: A role for gibberellic acid in orienting microtubules and regulation cell growth polarity in the maize root cortex. Planta 191: 149–157 (1993).

    CAS  Google Scholar 

  6. Bardense GWM, Karssen CM, Koornneef M: Role of endogenous gibberellins during fruit and seed development. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins, pp. 179–187. Springer-Verlag, Berlin (1991).

    Google Scholar 

  7. Baulcombe DC, Huttly AK, Martienssen RA, Barker RF, Jarvis MG: A novel wheat α-amylase gene (α-Amy3). Mol Gen Genet 209: 33–40 (1987).

    PubMed  CAS  Google Scholar 

  8. Baulcombe DC, Barker RF, Jarvis MG: A gibberellin responsive wheat gene has homology to yeast carboxypeptidase. J Biol Chem 262: 13726–13735 (1987).

    PubMed  CAS  Google Scholar 

  9. Beale MH, Hooley R, Smith SJ, Walker RP: Photoaffinity probes for gibberellin-binding proteins. Phytochemistry 31: 1459–64 (1992).

    CAS  Google Scholar 

  10. Beale MH, Ward JL, Smith SJ, Hooley R: A new approach to gibberellin perception in aleurone: novel, hydrophylic, membrane-impermeant, GA-sulphonic acid derivatives induce α-amylase formation. Physiol Plant 85: A136 (1992).

    Google Scholar 

  11. Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P: Physiological signals that induce flowering. Plant Cell 5: 1147–1155(1993).

    PubMed  CAS  Google Scholar 

  12. Bethke PC, Jones RL: Ca2 +-calmodulin modulates ion channel activity in storage protein vacuoles of barley aleurone cells. Plant Cell 6: 277–285 (1994).

    PubMed  CAS  Google Scholar 

  13. Brinegar AC, Cooper G, Stevens A, Hauer CR, Shabanowitz J, Hunt DF, Fox EJ: Characterization of a benzyladenine binding-site peptide isolated from a wheat cytokinin-binding protein: sequence analysis and identification of a single affinity-labelled histidine residue by mass spectrometry. Proc Natl Acad Sci USA 85 5927–5931 (1988).

    PubMed  CAS  Google Scholar 

  14. Bush DS: Regulation of cytosolic calcium in plants. Plant Physiol 103: 7–13 (1993).

    PubMed  CAS  Google Scholar 

  15. Bush DS, Jones RL: Cytoplasmic calcium and α-amylase secretion from barley aleurone protoplasts. Eur J Cell Biol 46: 466–469 (1988).

    CAS  Google Scholar 

  16. Bush DS, Biswas AK, Jones RL: Gibberellic-acid-stimulated Ca2 + accumulation in endoplasmic reticulum of barley aleurone: Ca2 + transport and steady-state levels. Planta 178:411–420(1989).

    CAS  Google Scholar 

  17. Bush DS, Biswas AK, Jones RL: Hormonal regulation of Ca2 + transport in the endomembrane system of the barley aleurone. Plant Physiol 189: 507–515 (1993).

    CAS  Google Scholar 

  18. Cautrecasas P: Interaction of insulin with the cell membrane: the primary action of insulin. Proc Natl Acad Sci USA 63: 450–457 (1969).

    Google Scholar 

  19. Cejudo FJ, Ghose TK, Stabel P, Baulcombe DC: Analysis of the gibberellin-responsive promoter of a cathepsin B-like gene from wheat. Plant Mol Biol 20: 849–856 (1992).

    PubMed  CAS  Google Scholar 

  20. Chandler PM: Hormonal regulation of gene expression in the ‘slender’ mutant of barley (Hordeum vulgare L.). Planta 175: 115–120(1988).

    CAS  Google Scholar 

  21. Chandler PM, Jacobsen JV: Primer extension studies on α-amylase mRNAs in barley aleurone. II. Hormonal regulation of expression. Plant Mol Biol 16: 637–645 (1991).

    PubMed  CAS  Google Scholar 

  22. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM: Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539–544 (1993).

    PubMed  CAS  Google Scholar 

  23. Chory J, Voytas DF, Olszewski NE, Ausubel FM: Gibberellin-induced changes in the populations of translatable mRNAs and accumulated polypeptides in dwarfs of maize and pea. Plant Physiol 83: 15–23 (1987).

    PubMed  CAS  Google Scholar 

  24. Croker SJ, Hedden P, Lenton JR, Stoddart JL: Comparison of gibberellins in normal and slender barley seedlings. Plant Physiol 94: 194–200 (1990).

    PubMed  CAS  Google Scholar 

  25. Duckett CM, Lloyd CW: Gibberellic acid-induced microtubule reorientation in dwarf peas is accompanied by rapid modification of an a-tubulin isotype. Plant J 5: 363–372 (1994).

    CAS  Google Scholar 

  26. Evans LT, King RW, Chu A, Mander LN, Pharis RP: Gibberellin structure and florigenic activity in Lolium temulentum, a long day plant. Planta 182: 97–106(1990).

    CAS  Google Scholar 

  27. Evans LT, King RW, Mander LN, Pharis RP: The relative significance for stem elongation and flowering in Lolium temulentum of 3β-hydroxylation of gibberellins. Planta 192: 130–136 (1994).

    CAS  Google Scholar 

  28. Feldwisch J, Zettl R, Hesse F, Schell J, Palme K: An auxin-binding protein is located to the plasma membrane of maize coleoptile cells: identification by photoaffinity labeling and purification of a 23-kDa polypeptide. Proc Natl Acad Sci USA 89: 475–479 (1992).

    PubMed  CAS  Google Scholar 

  29. Fernandez DE, Staehelin LE: Does gibberellic acid induce the transfer of lipase from protein bodies to lipid bodies in barley aleurone cells? Plant Physiol 85: 487–496 (1987).

    PubMed  CAS  Google Scholar 

  30. Feyerabend M, Weiler EW: Photoaffinity labeling and partial purification of the putative plant receptor for the fungal wilt-inducing toxin, fusicoccin. Planta 178: 282–290 (1989).

    CAS  Google Scholar 

  31. Fincher GB: Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Mol Biol 40: 305–346 (1989).

    CAS  Google Scholar 

  32. Foster CA: Slender: an accelerated extension growth mutant of barley. Barley Genet Newslett 7: 24–27 (1977).

    Google Scholar 

  33. Fujioka S, Yamane H, Spray CR, Katsumi M, Phinney BO, Gaskin P, MacMillan J, Takahashi N: The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci USA 85 9031–9035 (1988).

    PubMed  CAS  Google Scholar 

  34. Gale MD, Marshall GA: The nature and genetic control of gibberellin insensitivity in dwarf wheat grain. Heredity 35: 55–65 (1975).

    Google Scholar 

  35. Gillaspy G, Ben-David H, Gruissem W: Fruits: a developmental perspective. Plant Cell 5: 1439–1451 (1993).

    PubMed  Google Scholar 

  36. Gilroy S, Jones RL: Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc Natl Acad Sci USA 89: 3591–3595 (1992).

    PubMed  CAS  Google Scholar 

  37. Gilroy S, Jones RL: Calmodulin stimulation of unidirectional calcium uptake by the endoplasmic reticulum of barley aleurone. Planta 190: 289–298 (1993).

    CAS  Google Scholar 

  38. Gilroy S, Jones RL: Perception of gibberellin and abscisic acid at the external face of the plasma membrane of barley (Hordeum vulgare L.) aleurone protoplasts. Plant Physiol 104: 1185–1192 (1994).

    PubMed  CAS  Google Scholar 

  39. Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM: Isolation of the Arabidopsis AB13 gene by positional cloning. Plant Cell 4: 1251–1261 (1992).

    PubMed  CAS  Google Scholar 

  40. Goodwin PB, Carr DJ: The induction of amylase synthesis in barley aleurone layers by gibberellic acid I. Response to temperature. J Exp Bot 23: 1–7 (1972).

    CAS  Google Scholar 

  41. Greenberg J, Goldschmidt EE: Acidifying agents, up- take, and physiological activity of gibberellin A3 in Citrus. HortScience 24: 791–793 (1989).

    CAS  Google Scholar 

  42. Gubler F, Jacobsen JV: Gibberellin-responsive elements in the promoter of a barley high-pi α-amylase gene. Plant Cell 4: 1435–1441 (1992).

    PubMed  CAS  Google Scholar 

  43. Guzman P, Ecker JR: Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Physiol 93: 907–914 (1990).

    Google Scholar 

  44. Hamabata A, Rodriguez E, Garcia-Maya M, Bernal-Lugo I: Effect of pH on the GA3 induced α-amylase synthesis. J Plant Physiol 143: 349–352 (1994).

    CAS  Google Scholar 

  45. Harberd NP, Freeling M: Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics 121: 827–838 (1989).

    PubMed  CAS  Google Scholar 

  46. Heck GR, Chamberlain AK, Ho DT-H: Barley embryo globulin-1 gene, BEG1 -characterization of cDNA, chromosome mapping and regulation of expression Mol Gen Genet 239: 209–218 (1993).

    PubMed  CAS  Google Scholar 

  47. Hedden P, Croker SJ: Regulation of gibberellin biosynthesis in maize seedlings. In: Karssen CM, Van Loon LC, Vreugdenhil D (eds) Progress in Plant Growth Regulation, pp. 534–544. Kluwer Academic Publishers, Dordrecht, Netherlands (1992).

    Google Scholar 

  48. Herskowitz I: Functional inactivation of genes by dominant negative mutations. Nature 329: 219–222 (1987).

    PubMed  CAS  Google Scholar 

  49. Hetherington PR, Laidman DL: Influence of gibberellic acid and the Rht3 gene on choline and phospholipid metabolism in wheat aleurone tissue. J Exp Bot 42: 1357–1362 (1991).

    CAS  Google Scholar 

  50. Hicks GR, Rayle DL, Jones AM, Lomax TL: Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin. Proc Natl Acad Sci USA 86: 4948–4952 (1989).

    PubMed  CAS  Google Scholar 

  51. Hillmer S, Gilroy S, Jones RL: Visualizing enzyme secretion from individual barley (Hordeum vulgare) aleurone protoplasts. Plant Physiol 102: 279–286 (1992).

    Google Scholar 

  52. Ho DT-H, Shih S-C, Kleinhofs A: Screening for barley mutants with altered hormone sensitivity in their aleurone layers. Plant Physiol 66: 153–157 (1980).

    PubMed  CAS  Google Scholar 

  53. Hoad GV, Phinney BO, Sponsel VM, MacMillan J: The biological activity of sixteen gibberellin A4 and gibberellin A9 derivatives using seven bioassays. Phytochemistry 20: 703–713 (1981).

    CAS  Google Scholar 

  54. Hooley R, Beale MH, Smith SJ, MacMillan J: Novel affinity probes for gibberellin receptors in aleurone protoplasts of Avena fatua. In: Pharis RP, Rood SB (eds) Plant Growth Substances 1988, pp. 145–153. Springer-Verlag, Berlin/Heidelberg/New York (1990).

    Google Scholar 

  55. Hooley R, Beale MH, Smith SJ: Gibberellin perception at the plasma membrane of Avena fatua aleurone protoplasts. Planta 183: 274–280 (1991).

    CAS  Google Scholar 

  56. Hooley R, Smith SJ, Beale MH, Walker RP: In vivo photoaffinity labelling of gibberellin-binding proteins in Avena fatua aleurone. Aust J Plant Physiol 20: 573–584 (1993).

    CAS  Google Scholar 

  57. Hornberg C, Weiler EW: High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310: 321–324 (1984).

    CAS  Google Scholar 

  58. Huang N, Sutliff TD, Litts JC, Rodriguez RL: Classification and characterization of the rice α-amylase multigene family. Plant Mol Biol 14: 655–668 (1990).

    PubMed  CAS  Google Scholar 

  59. Huang N, Koizumi N, Reinl S, Rodriguez RL: Structural organization and differential expression of rice α-amylase genes. Nucl Acids Res 18: 7007–7014 (1990).

    PubMed  CAS  Google Scholar 

  60. Huang N, Stebbins GL, Rodriguez RL: Classification and evolution of α-amylase genes in plants. Proc Natl Acad Sci USA 89: 7526–7530 (1992).

    PubMed  CAS  Google Scholar 

  61. Huang N, Reinl SJ, Rodriguez RL: RAmy2A: a novel α-amylase-encoding gene in rice. Gene 111: 223–228 (1992).

    PubMed  CAS  Google Scholar 

  62. Huttly AK, Martienssen RA, Baulcombe DC: Sequence heterogeneity and differential expression of the α-Amy2 gene family in wheat. Mol Gen Genet 214: 232–240 (1988).

    PubMed  CAS  Google Scholar 

  63. Huttly AK, Baulcombe DC: A wheat α-Amy2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts. EMBO J 8: 1907–1913 (1989).

    PubMed  CAS  Google Scholar 

  64. Huttly AK, Phillips AL, Tregear JW: Localisation of cis elements in the promoter of a wheat α-Amy2 gene. Plant Mol Biol 19: 903–911 (1992).

    PubMed  CAS  Google Scholar 

  65. Jacobsen JV, Beach RL: Control of transcription of α-amylase and rRNA genes in barley aleurone protoplasts by gibberellic acid and abscisic acid. Nature 316: 275–277 (1985).

    CAS  Google Scholar 

  66. Jacobsen JV, Close TJ: Control of transient expression of chimaeric genes by gibberellic acid and abscisic acid in protoplasts prepared from mature barley aleurone layers. Plant Mol Biol 16: 713–724 (1991).

    PubMed  CAS  Google Scholar 

  67. Jacobsen SE, Olszewski NE: Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiol 97: 409–414 (1991).

    PubMed  CAS  Google Scholar 

  68. Jacobsen SE, Olszewski NE: Mutations at the SPIN-DLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 5: 887–896 (1993).

    PubMed  CAS  Google Scholar 

  69. Jacobsen SE, Shi L, Xin X, Olszewski NE: Gibberellin-induced changes in the translatable mRNA populations of stamens and shoots of gibberellin-deficient tomato. Planta 192: 372–378 (1994).

    PubMed  CAS  Google Scholar 

  70. Jelsema CL, Ruddat M, Morre DJ, Williamson FA: Specific binding of gibberellin A1 to aleurone grain fractions from wheat endosperm. Plant Cell Physiol 18: 1009–1019 (1977).

    CAS  Google Scholar 

  71. Jones MG: Gibberellins and the procera mutant of tomato. Planta 172: 280–284 (1987).

    CAS  Google Scholar 

  72. Jones RL, Bush DS: Gibberellic acid and abscisic acid regulate the level of a BiP cognate in the endoplasmic reticulum of barley aleurone cells. Plant Physiol 97: 456–459 (1991).

    PubMed  CAS  Google Scholar 

  73. Jones RL, Jacobsen JV: Regulation of synthesis and transport of secreted proteins in cereal aleurone. Int Rev Cytol 126: 49–88 (1991).

    PubMed  CAS  Google Scholar 

  74. Jupe SC, Causton DR, Scott IM: Cellular basis of the effects of gibberellin and the pro gene on stem growth in tomato. Planta 174: 106–111 (1988).

    CAS  Google Scholar 

  75. Karrer EE, Litts JC, Rodriguez RL: Differential expression of 03b1-amylase genes in germinating rice and barley seeds. Plant Mol Biol 16: 797–805 (1991).

    PubMed  CAS  Google Scholar 

  76. Katsumi M, Ishida K: Gibberellin control of cell elongation. In: Takahashi N, Phinney BO, MacMillan J (eds) Gibberellins, pp. 211–219. Springer-Verlag, New York (1991).

    Google Scholar 

  77. Kieber J J, Rothenberg M, Roman G, Feldmann K, Ecker JR: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427–441 (1993).

    PubMed  CAS  Google Scholar 

  78. Keith B, Boal R, Srivastava LM: On the uptake, meta-bolism and retention of [3H]GA1 by barley aleurone layers at low temperatures. Plant Physiol 66: 956–961 (1980).

    PubMed  CAS  Google Scholar 

  79. Keith B, Srivastava LM: In vivo binding of gibberellin A1 in dwarf pea epicotyls. Plant Physiol 66: 962–967 (1980).

    PubMed  CAS  Google Scholar 

  80. Keith B, Foster NA, Bonettemaker M, Srivastava LM: In vitro gibberellin A4 binding to extracts of cucumber hypocotyls. Plant Physiol 68: 344–348 (1981).

    PubMed  CAS  Google Scholar 

  81. Keith B, Brown S, Srivastava LM: In vitro binding of gibberellin A4 to extracts of cucumber measured by using DEAE-cellulose filters. Proc Natl Acad Sci USA 79: 1515–1519(1982).

    PubMed  CAS  Google Scholar 

  82. Keith B, Rappaport L: In vitro [3H] gibberellin Al binding to soluble proteins from GA-sensitive and GA-insensitive dwarf maize mutants. In: Fox EJ, Jacobs M (eds) Molecular Biology of Plant Growth Control, pp. 289–298. Alan R. Liss, New York (1987).

    Google Scholar 

  83. Keith B, Rappaport L: In vitro gibberellin A1 binding in Zea mays L. Plant Physiol 85: 934–941 (1987).

    PubMed  CAS  Google Scholar 

  84. Kim J-K, Cao J, Wu R: Regulation and interaction of multiple protein factors with the proximal promoter regions of a rice high pi α-amylase gene. Mol Gen Genet 232: 383–393 (1992).

    PubMed  CAS  Google Scholar 

  85. Koehler SM, Ho DT-H: Hormonal regulation, processing, and secretion of cysteine proteases in barley aleurone layers. Plant Cell 2: 769–783 (1990).

    PubMed  CAS  Google Scholar 

  86. Koorrnneef M, Van der Veen JH: Induction and analysis of gibberellin-sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 58: 257–263 (1980).

    Google Scholar 

  87. Koornneef M, Bosma TDG, Hanhart CJ, Van der Veen JH, Zeevaart J AD: The isolation and characterization of gibberellin-deficient mutants in tomato. Theor Appl Genet 80: 852–857 (1990).

    Google Scholar 

  88. Lanahan MB, Ho DT-H: Slender barley: a constitutive gibberellin-response mutant. Planta 175: 107–114 (1988).

    CAS  Google Scholar 

  89. Lanahan MB, Ho DT-H, Rogers SW, Rogers JC: A gibberellin response complex in cereal α-amylase gene promoters. Plant Cell 4: 203–211 (1992).

    PubMed  CAS  Google Scholar 

  90. Lashbrook CC, Keith B, Rappaport L: In vitro gibberellin A1 binding to a soluble fraction from dwarf pea epicotyls. In: Fox EJ, Jacobs M (eds) Molecular Biology of Plant Growth Control, pp. 299–308. Alan R. Liss, New York (1987).

    Google Scholar 

  91. Leung J, Bouvier-Durand M, Morris P-C, Guerrier D, Chefdor F, Giraudat J: Arabidopsis ABA response gene ABII: features of a calcium-modulated protein phosphatase. Science 264: 1448–1452 (1994).

    PubMed  CAS  Google Scholar 

  92. Liu Z-H, Srivastava LM: In vitro binding of gibberellin A4 in epicotyls of dwarf pea and tall pea. In: Fox EJ, Jacobs M (eds) Molecular Biology of Plant Growth Control, pp. 315–322. Alan R. Liss, New York (1987).

    Google Scholar 

  93. McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil LK: The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66: 895–905 (1991).

    PubMed  CAS  Google Scholar 

  94. Martin C, Gerats T: Control of pigment biosynthesis genes during petal development. Plant Cell 5: 1253–1264 (1993).

    PubMed  CAS  Google Scholar 

  95. Mendu N, Silflow CD: Elevated levels of tubulin transcripts accompany the GA3-induced elongation of oat internode segments. Plant Cell Physiol 34: 973–983 (1993).

    CAS  Google Scholar 

  96. Meyer K, Leube MP, Grill E: A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264: 1452–1455 (1994).

    PubMed  CAS  Google Scholar 

  97. Montague MJ: Calcium antagonists inhibit sustained gibberellic acid-induced growth of Avena (Oat) stem segments. Plant Physiol 101: 399–405 (1993).

    PubMed  CAS  Google Scholar 

  98. Musgrave A, Kays SE, Kende H: Uptake and metabolism of radioactive gibberellins by barley aleurone layers. Planta 102: 1–10 (1972).

    CAS  Google Scholar 

  99. Muthukrishnan S, Chandra GR, Maxwell EA: Hormone-induced increases in levels of functional mRNA and α-amylase mRNA in barley aleurones. Proc Natl Acad Sci USA 76: 6181–6185 (1979).

    PubMed  CAS  Google Scholar 

  100. Muthukrishnan S, Chandra GR, Maxwell EA: Hormonal control of α-amylase gene expression in barley studies using a cloned cDNA probe. J Biol Chem 258: 2370–2375 (1983).

    PubMed  CAS  Google Scholar 

  101. Muthukrishnan S, Chandra GR, Albaugh GP: Modula- tion by abscisic acid and S-2-aminoethyl-L-cysteine of α-amylase mRNA in barley aleurone cells. Plant Mol Biol 2: 249–258 (1983).

    CAS  Google Scholar 

  102. Nadeau R, Rappaport L, Stolp CF: Uptake and metabolism of 3H-gibberellin A1 by barley aleurone layers: response to abscisic acid. Planta 107: 315–324 (1972).

    CAS  Google Scholar 

  103. Nakajima M, Sakai S, Kanazawa K, Kizawa S, Yamaguchi I, Takahashi N, Murofushi N: Partial purification of a soluble gibberellin-binding protein from mung bean hypocotyls. Plant Cell Physiol 34: 289–296 (1993).

    CAS  Google Scholar 

  104. Ni B-R, Bradford KJ: Germination and dormancy of abscisic acid- and gibberellin-deficient mutant tomato (Lycopersicon esculentum) seeds. Sensitivity of germination to abscisic acid, gibberellin, and water potential. Plant Physiol 101: 607–617 (1993).

    PubMed  CAS  Google Scholar 

  105. Nissen P: Dose responses of gibberellins. Physiol Plant 72: 197–203 (1988).

    CAS  Google Scholar 

  106. Nitsch J: Hormonal factors in growth and development. In: Hume AC (ed) The Biochemistry of Fruits and their Products, vol. II, pp. 427–472. Academic Press, London (1970).

    Google Scholar 

  107. Nour JM, Rubery PH: The uptake of gibberellin A1 by suspension-cultured Spinacia oleracea cells has a carrier-mediated component. Planta 160: 436–443 (1984).

    CAS  Google Scholar 

  108. Okamuro JK, den Boer BGW, Jofuku KD: Regulation of Arabidopsis flower development. Plant Cell 5: 1183–1193(1993).

    PubMed  CAS  Google Scholar 

  109. Orchinik M, Murray TF, Moore FL: Steroid modulation of GAB A(A) receptors in an amphibian brain. Brain Res 646: 258–266 (1994).

    PubMed  CAS  Google Scholar 

  110. Ou-Lee T-M, Turgeon R, Wu R: Interaction of a gibberellin-induced factor with the upstream region of an α-amylase gene in rice aleurone tissue. Proc Natl Acad Sci USA 85: 6366–6369 (1988).

    PubMed  CAS  Google Scholar 

  111. Parker MG: Steroid and related receptors. Curr Opin Cell Biol 5: 499–504 (1993).

    PubMed  CAS  Google Scholar 

  112. Pauls KP, Chambers JA, Dumbroff EB, Thompson JE: Perturbation of phospholipid membranes by gibberellins. New Phytol 91: 1–17 (1982).

    CAS  Google Scholar 

  113. Peng J, Harberd NP: Derivative alleles of the Arabidopsis gibberellin-insensitive (gai) mutation confer a wild-type phenotype. Plant Cell 5: 351–360 (1993).

    PubMed  CAS  Google Scholar 

  114. Pharis RP, King RW: Gibberellins and reproductive development in seed plants. Annu Rev Plant Physiol Plant Mol Biol 36: 517–568(1985).

    CAS  Google Scholar 

  115. Phillips AL, Huttly AK: Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of the tonoplast water channel, γ-TIP, is increased by GA3. Plant Mol Biol 24: 603–615 (1994).

    PubMed  CAS  Google Scholar 

  116. Poovaiah BW, Reddy ASN: Calcium and signal transduction in plants. Crit Rev Plant Sci 12: 185–211 (1993).

    PubMed  CAS  Google Scholar 

  117. Potts WC, Reid JB, MurfetIC: Internode length in Pisum. Gibberellins and the slender phenotype. Physiol Plant 63: 357–364 (1985).

    CAS  Google Scholar 

  118. Reid JB: Plant hormone mutants. J Plant Growth Regul 12: 207–226 (1994).

    Google Scholar 

  119. Reid JB, Ross JJ, Swain SM: Internode length in Pisum a new slender mutant with elevated levels of C19 gibberellins. Planta 188: 462–467 (1992).

    CAS  Google Scholar 

  120. Robbins WJ: Gibberellic acid and the reversal of adult Hedera to a juvenile state. Am J Bot 44: 743–746 (1957).

    Google Scholar 

  121. Rogers JC, Rogers SW: Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. Plant Cell 4: 1443–1451 (1992).

    PubMed  CAS  Google Scholar 

  122. Rogers JC, Lanahan MB, Rogers SW: The cis-acting gibberellin response complex in high-pi α-amylase gene promoters. Plant Physiol 105: 151–158 (1994).

    PubMed  CAS  Google Scholar 

  123. Ross JJ, Murfet IC, Reid JB: Distribution of gibberellins an Lathyrus odoratus L. and their role in leaf growth. Plant Physiol 102: 603–608 (1993).

    PubMed  CAS  Google Scholar 

  124. Rushton PJ, Hooley R, Lazarus CM: Aleurone nuclear proteins bind to similar elements in the promoter regions of two gibberellin-regulated α-amylase genes. Plant Mol Biol 19: 891–901 (1992).

    PubMed  CAS  Google Scholar 

  125. Schena M, Lloyd AM and Davis RW: A steroidinducible gene expression system for plant cells. Proc Natl Acad Sci USA 88: 10421–10425 (1991).

    PubMed  CAS  Google Scholar 

  126. Schroeder JI, Hagiwara S: Repetitive increases in cytosolic Ca2 + of guard cells by abscisic acid activation of nonselective Ca2 + permeable channels. Proc Natl Acad Sci USA 87: 9305–9309 (1990).

    PubMed  CAS  Google Scholar 

  127. Serebryakov EP, Agnistikova VN, Suslova LM: Growth-promoting activity of some selectively modified gibberellins. Phytochemistry 23: 1847–1854 (1984).

    CAS  Google Scholar 

  128. Serebryakov EP, Epstein NA, Yasinskaya NP, Kaplun AB: A mathematical additive model of the structure-activity relationships of gibberellins. Phytochemistry 23: 1855–1863 (1984).

    CAS  Google Scholar 

  129. Shi L, Gast RT, Gopalraj M, Olszewski NE: Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato. Plant J 2: 153–159 (1992).

    PubMed  CAS  Google Scholar 

  130. Shibaoka H: Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 45: 527–544 (1994).

    CAS  Google Scholar 

  131. Singh SP, PalegLG: Low temperature-induced GA3 sensitivity of wheat II. Changes in lipids associated with the low temperature-induced GA3 sensitivity of isolated aleurone of wheat. Plant Physiol 76: 143–147 (1984).

    PubMed  CAS  Google Scholar 

  132. Singh SP, Paleg LG: Low temperature-induced GA3 sensitivity of wheat. IV. Comparison of low temperature effects on the phospholipids of aleurone tissue of dwarf and tall wheat. Aust J Plant Physiol 12: 277–289 (1985).

    CAS  Google Scholar 

  133. Singh SP, PalegLG: Low temperature-induced GA3 sensitivity of wheat. VI. Effect of inhibitors of lipid biosynthesis on α-amylase production by dwarf (Rht3) and tall (rht) wheat, and on lipid metabolism of tall wheat aleurone tissue. Aust J Plant Physiol 13: 409–416 (1986).

    CAS  Google Scholar 

  134. Sinjorgo KMC, de Vries MA, Heistek JC, van Zeijl MJ, van der Veen SW, Douma AC: The effect of external pH on the gibberellic acid response of barley aleurone. J Plant Physiol 142: 506–509 (1993).

    CAS  Google Scholar 

  135. Skriver K, Olsen FL, Rogers JC, Mundy J: Cis-acting elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA 88: 7266–7270 (1991).

    PubMed  CAS  Google Scholar 

  136. Smith SJ, Walker RP, Beale MH, Hooley R: Biological activity of some gibberellins and gibberellin derivatives in aleurone cells and protoplasts of Avena fatua. Phytochemistry 33: 17–20 (1993).

    CAS  Google Scholar 

  137. Srivastava LM: The gibberellin receptor. In: Klambdt D (ed), Plant Hormone Receptors, pp. 192–227. Springer-Verlag, Berlin/Heidelberg (1987).

    Google Scholar 

  138. Stoddart JL, Breidenbach W, Nadeau R, Rappaport L: Selective binding of [3H] gibberellin A1 by protein fractions from dwarf pea epicotyls. Proc Natl Acad Sci USA 71: 3255f–3259 (1974).

    Google Scholar 

  139. Stoddart JL: Interaction of [3H] gibberellin A1 with a sub-cellular fraction from lettuce (Lactuca sativa L.) hypocotyls. I. Kinetics of labelling. Planta 146: 353–361 (1979).

    CAS  Google Scholar 

  140. Stoddart JL: Interaction of [3H] gibberellin A1 with a sub-cellular fraction from lettuce (Lactuca sativa L.) hypocotyls. II. Stability and properties of the association. Planta 146: 363–368 (1979).

    CAS  Google Scholar 

  141. Stoddart JL, Williams PD: Interaction of [3H] gibberellin A1 with a sub-cellular fraction from lettuce (Lactuca sativa L.) hypocotyls. Requirement for protein synthesis. Planta 147: 264–268 (1979).

    CAS  Google Scholar 

  142. Stoddart JL, Williams PD: Interaction of [3H] gibberellin A1 with a sub-cellular fraction from lettuce (Lactuca sativa L.) hypocotyls. The relationship between growth and incorporation. Planta 148: 485–490 (1980).

    CAS  Google Scholar 

  143. Sutliff TD, Lanahan MB, Ho DT-H: Gibberellin treatment stimulates nuclear factor binding to the gibberellin response complex in a barley α-amylase promoter. Plant Cell 5: 1681–1692 (1993).

    PubMed  CAS  Google Scholar 

  144. Suttle JC, Hultstrand JF, Tanaka FS: The biological activities of five azido N-substituted phthalimides: potential photoaffinity reagents for gibberellin receptors. Plant Growth Regul 11: 311–318 (1992).

    CAS  Google Scholar 

  145. Talon M, Koornneef M, Zeevaart JAD: Accumulation of C19-gibberellins in the gibberellin-insensitive dwarf mutant gai of Arabidopsis thaliana (L.) Heynh. Planta 182: 501–505 (1990).

    CAS  Google Scholar 

  146. Thuleau P, Ward JM, Ranjeva R, Schroeder JI: Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell. EMBO J 13: 2970–2975 (1994).

    PubMed  CAS  Google Scholar 

  147. Tidd BK: Dissociation constants of the gibberellins. J Chem Soc 1521–1523 (1964).

    Google Scholar 

  148. Vakharia DN, Brearley CA, Wilkinson MC, Gaillard T, Laidman DL: Gibberellin modulation of phosphatidylcholine turnover in wheat aleurone tissue. Planta 172: 502–507 (1987).

    CAS  Google Scholar 

  149. Venis M: Hormone-binding studies and the misuse of precipitation assays. Planta 162: 502–505 (1984).

    CAS  Google Scholar 

  150. Walker RP, Beale MH, Hooley R: Photoaffinity labelling of MAC 182, a gibberellin-specific monoclonal antibody. Phytochemistry 31: 3331–3335 (1992).

    CAS  Google Scholar 

  151. Walker RP, Waterworth WM, Hooley R: Preparation and polypeptide composition of plasma membrane and other subcellular fractions from wild oat (Avena fatua) aleurone. Physiol Plant 89: 388–398 (1993).

    CAS  Google Scholar 

  152. Walker RP, Waterworth WM, Beale MH, Hooley R: Gibberellin-photoaffinity labeling of wild oat (Avena fatua L.) aleurone protoplasts. Plant Growth Regul 12: 1–9 (1994).

    Google Scholar 

  153. Watanabe H, Abe K, EmoriY, HosoyamaH, Arai S: Molecular cloning and gibberellin-induced expression of multiple cysteine proteinases of rice seeds (oryzains). J Biol Chem 266: 16897–16902 (1991).

    PubMed  CAS  Google Scholar 

  154. Weiss D, Halevy AH: Stamens and gibberellins in the regulation of corolla pigmentation and growth in Petunia hybrida. Planta 179: 89–96 (1989).

    CAS  Google Scholar 

  155. Weiss D: Regulation of corolla pigmentation and development in petunia flower. Ph. D. thesis, The Hebrew University of Jerusalem, Israel (1990).

    Google Scholar 

  156. Weiss D, van Tunen AJ, Halevy AH, Mol JNM, Gerats AGM: Stamens and gibberellic acid in the regulation of flavonoid gene expression in the corolla of Petunia hybrida. Plant Physiol 94: 511–515 (1990).

    PubMed  CAS  Google Scholar 

  157. Weiss D, van Blokland R, Kooter JM, Mol JNM, van Tunen AJ: Gibberellic acid regulates chalcone synthase gene transcription in the corolla of Petunia hybrida. Plant Physiol 98: 191–197 (1992).

    PubMed  CAS  Google Scholar 

  158. Weiss D, van der Luit AH, Kroon JTM, Mol JNM, Kooter JM: The petunia homologue of the Antirrhinum majus candi and Zea mays A2 flavonoid genes; homology to flavanone 3-hydroxylase and ethylene-forming enzyme. Plant Mol Biol 22: 893–897 (1993).

    PubMed  CAS  Google Scholar 

  159. Whittier RF, Dean DA, Rogers JC: Sequence analysis of α-amylase and thiol protease genes that are hormonally regulated in barley aleurone cells. Nucl Acids Res 15: 2515–2535 (1987).

    PubMed  CAS  Google Scholar 

  160. Wilkinson MC, Laidman DL, Galliard T: Two sites of phosphatidyl choline synthesis in the wheat aleurone cell. Plant Sci Lett 35: 195–199 (1984).

    CAS  Google Scholar 

  161. Wilson RN, HeckmanJW, Somerville CR: Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100: 403–408 (1992).

    PubMed  Google Scholar 

  162. Winkler RG, Freeling M: Physiological genetics of the dominant gibberellin-nonresponsive maize dwarfs, Dwarf8 and Dwarf9. Planta 193: 341–348 (1994).

    CAS  Google Scholar 

  163. Wolf N: Structure of the genes encoding Hordeum vulgare (1–3,1–4)-β-glueanase isoenzymes I and II and functional analysis of their promoters in barley aleurone protoplasts. Mol Gen Genet 234: 33–43 (1992).

    PubMed  CAS  Google Scholar 

  164. Wood A, Paleg LG: The influence of gibberellic acid on the permeability of model membrane systems. Plant Physiol 50: 103–108 (1972).

    PubMed  CAS  Google Scholar 

  165. Wood A, Paleg LG: Alteration of liposomal membrane fluidity by gibberellic acid. Aust J Plant Physiol 1: 31–40 (1974).

    CAS  Google Scholar 

  166. Wood A, Paleg LG, Spotswood TM: Hormone-phospholipid interaction: a possible hormonal mechanism of action in the control of membrane permeability. Aust J Plant Physiol 1: 167–169 (1974).

    CAS  Google Scholar 

  167. Yalpani N, Srivastava LM: Competition for in vitro [3H] gibberellin A4 binding in cucumber by gibberellins and their derivatives. Plant Physiol 79: 963–967 (1985).

    PubMed  CAS  Google Scholar 

  168. Yalpani N, Suttle JC, Hultstrand JF, Rodaway SJ: Competition for in vitro [3H] gibberellin A4 binding in cucumber by substituted phthalamides. Plant Physiol 91: 823–828 (1989).

    PubMed  CAS  Google Scholar 

  169. Zettl R, Feldwisch J, Boland W, Schell J, Palme K: 5′-Azido-[3,6–3H2]-1-naphthylphthalamic acid, aphotoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: identification of a 23-kDa protein from maize coleoptile plasma membranes. Proc Natl Acad Sci USA 89: 480–484 (1992).

    PubMed  CAS  Google Scholar 

  170. Zorec R, Tester M: Cytoplasmic calcium stimulates exocytosis in a plant secretory cell. Biophys J 63: 864–867 (1992).

    PubMed  CAS  Google Scholar 

  171. Zwar JA, Hooley R: Hormonal regulation of α-amylase gene transcription in wild oat (Avena fatua L.) aleurone protoplasts. Plant Physiol 80: 459–463 (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Palme

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hooley, R. (1994). Gibberellins: perception, transduction and responses. In: Palme, K. (eds) Signals and Signal Transduction Pathways in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0239-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0239-1_17

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4107-2

  • Online ISBN: 978-94-011-0239-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics