Skip to main content

Fatty acid signalling in plants and their associated microorganisms

  • Chapter
Signals and Signal Transduction Pathways in Plants

Abstract

Fatty acid signals in plants have a long history. A fatty acid derivative, traumatic acid, was identified as a cell division promoter in wounded bean mesocarp and was among the first ever biologically active molecules isolated directly from a plant tissue. A structure for this molecule was published in 1939 [20]. Indolyl-3-acetic acid (IAA), an auxin isolated from urine in 1934, was definitively isolated from plant tissues in 1942 by Haagen-Smit et al. [32]. Like the complex story of the discovery of the structures of auxins, the true nature of traumatic acid has been confusing due to the more recent discovery that this compound may have become modified during the extraction leading to its discovery [77]. With renewed interest in fatty acid signalling, some of the old literature is being revised and many new facets of fatty acid signalling are emerging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts RJ, Gisi D, De Carolis E, De Luca V, Baumann TW: Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J 5: 635–645 (1994).

    Article  CAS  Google Scholar 

  2. Albrecht T, Kehlen A, Stahl K, Knöfel H-D, Sembdner G, Weiler EW: Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonal antibody. Planta 191: 86–94 (1993).

    Article  CAS  Google Scholar 

  3. Anderson JM: Membrane-derived fatty acids as precursors to second messengers. In: Boss WF, Morre DJ (eds) Second Messengers in Plant Growth and Development, pp. 181–182. Liss, New York (1989).

    Google Scholar 

  4. Becker W, Apel K: Differences in gene expression between natural and artificially induced leaf senescence. Planta 189: 74–79 (1993).

    Article  CAS  Google Scholar 

  5. Bolter CJ: Methyl jasmon ate induces papain inhibitor(s) in tomato leaves. Plant Physiol 103: 1347–1352 (1993).

    PubMed  CAS  Google Scholar 

  6. Bostock RM, Kuc JA, Laine RA: Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Science 212: 67–69 (1981).

    Article  PubMed  CAS  Google Scholar 

  7. Bostock RM, Yamamoto H, Choi D, Ricker KE, Ward BL: Rapid stimulation of 5-lipoxygenase activity in potato by the fungal elicitor arachidonic acid. Plant Physiol 100: 1448–1456 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. Brodowsky IR, Hamberg M, Oliw EH: A linoleic acid 8(R)-dioxygenase and hydroperoxide isomerase of the fungus Gaeumannomyces graminis: Biosynthesis of 8(R)- hydroxylinoleic acid and 7(S),8(S)-dihydroxylinoleic acid from 8(R)-hydroperoxylinoleic acid. J Biol Chem 267: 14738–14745 (1992).

    PubMed  CAS  Google Scholar 

  9. Bowers WS, Hoch HC, Evans PH, Katayama M: Thallophytic allelopathy: isolation and identification of laetisaric acid. Science 232: 105–106 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. Castoria R, Fanelli C, Fabbri AA, Pasi S: Metabolism of arachidonic acid involved in its eliciting activity in potato tuber. Physiol Mol Plant Path 41: 127–137 (1992).

    Article  CAS  Google Scholar 

  11. Choi D, Ward BL, Bostock RM: Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell 4: 1333–1344 (1992).

    PubMed  CAS  Google Scholar 

  12. Choi D, Bostock RM, Avdiushko S, Hildebrand DF: Lipid-derived signals that discriminate woundand pathogen-responsive isoprenoid pathways in plants: methyl-jasmonate and the fungal elicitor arachidonic acid induce different HMG-CoA reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci USA 91: 2329–2333 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. Cohen Y, Gisi U, Mosinger E: Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic-methylester. Phytopath 83: 1054–1062 (1993).

    Article  CAS  Google Scholar 

  14. Creelman RA, Tierney ML, Mullet JE: Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89: 4938–4941 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. Croft KPC, Jüttner F, Slusarenko AJ: Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv. phaseolicola. Plant Physiol 101: 13–24 (1993).

    PubMed  CAS  Google Scholar 

  16. de Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Lo Schiavo F, Terzi M, Bisseling T, van Kammen A, de Vries SC: Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 6: 615–620 (1993)

    Google Scholar 

  17. Deng W, Hamilton-Kemp TR, Nelson MT, Andersen RA, Collins GB, Hildebrand DF: Effects of six-carbon aldehydes and alcohols on bacterial proliferation. J Agric Food Chem 41: 506–510 (1993).

    Article  CAS  Google Scholar 

  18. Doherty HM, Selvendran RR, Bowles DJ: The wound response of tomato plants can be inhibited by aspirin and related hydroxybenzoic acids. Physiol Mol Plant Path 32: 377–384 (1988).

    Article  Google Scholar 

  19. Eckelkamp K, Ehmann B, Schopfer P: Wound-induced systemic accumulation of a transcript coding for a Bowman-Birk trypsin inhibitor-related protein in maize (Zea mays L.) seedlings. FEBS Lettt 323: 73–76 (1993).

    Article  CAS  Google Scholar 

  20. English J, Bonner J, Haagen-Smit AJ: Structure and synthesis of a plant wound hormone. Science 90: 329 (1939).

    Article  PubMed  CAS  Google Scholar 

  21. Esterbauer H, Schaur RJ, Zollner H: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad Biol Med 11: 81–128 (1988).

    Article  Google Scholar 

  22. Falkenstein E, Groth B, Mithöfer A, Weiler EW: Methyl jasmonate and α-linolenic acid are potent inducers of tendril coiling. Planta 185: 316–322 (1991).

    Article  CAS  Google Scholar 

  23. Farmer EE, Ryan CA: Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713–7716 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. Farmer EE, Ryan CA: Octadecanoid-derived signals in plants. Trends Cell Biol 2: 236–241 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. Farmer EE, Ryan CA: Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129–134 (1992).

    PubMed  CAS  Google Scholar 

  26. Farmer EE, Johnson RR, Ryan CA: Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98: 995–1002 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. Fisher RF, Long SR: Rhizobium-plmt signal exchange. Nature 357: 655–659 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. Gardner HW: Recent investigations into the lipoxygenase pathway of plants. Biochim Biophys Acta 1084: 221–239 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. Gardner HW, Hamberg M: Oxygenation of (3Z)-nonenal to (2E)-4-hydroxy-2-nonenal in the broad bean (Vicia faba L.). J Biol Chem 268: 6971–6977 (1993).

    PubMed  CAS  Google Scholar 

  30. Green TR, Ryan CA: Wound-induced proteinase inhibitor in plant leaves: a possible defence mechanism against insects. Science 175: 776–77 (1972).

    Article  PubMed  CAS  Google Scholar 

  31. Gundlach H, Müller MJ, Kutchan TM, Zenk MH: Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89: 2389–2393 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. Haagen-Smit AJ, Leach WD, Bergren WR: The estimation, isolation and identification of auxins in plant materials. Am J Bot 29: 500–506 (1942).

    Article  CAS  Google Scholar 

  33. Hamburg M, Gardner HW: Oxylipin pathway to jasmonates: biochemistry and biological significance. Biochim Biophys Acta 1165: 1–18 (1992).

    Article  Google Scholar 

  34. Hatanaka A, Kajiwara T, Sekija J: Biosynthetic pathway of C6-aldehyde formation from linolenic acid in green leaves. Chem Phys Lipids 44: 341–361 (1987).

    Article  CAS  Google Scholar 

  35. Hildebrand DF, Brown GC, Jackson DM, Hamilton Kemp TR: Effects of some leaf-emitted volatile compounds on aphid population increase. J Chem Ecol 19: 1875–1887 (1993).

    Article  CAS  Google Scholar 

  36. Kaiser I, Engelberth J, Groth B, Weiler EW: Touch and methyl jasmonate induced lignification in tendrils of Bryonia dioica Jacy. Bot Acta 107: 24–29 (1994).

    CAS  Google Scholar 

  37. Kato T, Yamaguchi Y, Hirano T, Yokohama T, Uyehara T, Yamanaka S, Harada T: Unsaturated hydroxyfatty acids, the self defence substances in rice plant against rice blast disease. Chem Lett: 409–412 (1984).

    Google Scholar 

  38. Keen NT, Sims JJ, Midland S, Yoder M, Jurnak F, Shen H, Boyd C, Yucul I, Lorang J, Murillo J: Determinants of specificity in the interaction of plants with bacterial pathogens. In: Nester EW, Verma PS (eds) Advances in Molecular Genetics and Plant-Microbe Interactions, pp. 211–220. Kluwer Academic Publishers, Dordrecht (1993).

    Google Scholar 

  39. Knudsen JT, Tollsten L, Bergstrom G: Floral scents — a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33: 253–280 (1993).

    Article  CAS  Google Scholar 

  40. Koda Y, Kikuta Y, Kitahara T, Nishi T, Mori K: Comparisons of various biological activities of stereoisomers of methyl jasmonate. Phytochemistry 31: 1111–1114 (1992).

    Article  CAS  Google Scholar 

  41. Koda Y: The role of jasmonic acid and related com- pounds in the regulation of plant development. Int Rev Cytol 135: 155–199 (1992).

    Article  PubMed  CAS  Google Scholar 

  42. Lyr H, Banasiak L: Alkenals, volatile defence substances in plants, their properties and activities. Acta Phytopath Acad Sci Hung 18: 3–12 (1983).

    CAS  Google Scholar 

  43. Mazur P, Nakanishi K, El-Zayat AAE, Champe SP: Structure and synthesis of sporogenic psi factors from Aspergillus nidulans. J Chem Soc Chem Commun 20: 1486–1487 (1991).

    Article  Google Scholar 

  44. Meyer A, Miersch O, Büttner C, Dathe W, Sembdner G: Occurrence of the plant growth regulator jasmonic acid in plants. J Growth Regul 3: 1–8 (1984).

    Article  CAS  Google Scholar 

  45. Meyer A, Schmidt J, Gross D, Jensen E, Rudolph A, Vorkefeld S, Sembdner G: Amino acid conjugates as metabolites of the plant growth regulator dihydrojasmonic acid in barley (Hordeum vulgare). J Plant Growth Regul 10: 17–25 (1991).

    Article  CAS  Google Scholar 

  46. Meyer A, Gross D, Vorkfeld S, Kummer M, Schmidt J, Sembdner G, Schreiber K: Metabolism of the plant growth regulator dihydrojasmonic acid in barley shoots. Phytochemistry 28: 1007–1011 (1989).

    Article  CAS  Google Scholar 

  47. Mueller MJ, Brodschelm W, Spannagl E, Zenk MH: Signalling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90: 7490–7494 (1993).

    Article  PubMed  CAS  Google Scholar 

  48. Panossian AG, Avetissian GM, Mantsakanian VA, Batrakov SG, Vartanian SA, Gabrielian ES, Amroyan EA: Unsaturated polyhydroxy acids having prostagladinlike activity from Bryonia alba. II. Major components. Planta Med 47: 17–25 (1983).

    Article  PubMed  CAS  Google Scholar 

  49. Parthier B: Jasmonates: hormonal regulators or stress factors in leaf senescence? J Plant Growth Regul 9: 1–7 (1990).

    Article  Google Scholar 

  50. Parthier B: Jasmonates, new regulators of plant growth and development: many facts and few hypotheses on their actions. Bot Acta 104: 446–454 (1991).

    CAS  Google Scholar 

  51. Pearce G, Strydom D, Johnson S, Ryan CA: A polypeptide from tomato leaves activates the expression of proteinase inhibitor genes. Science 253: 895–897 (1991).

    Article  PubMed  CAS  Google Scholar 

  52. Peña-Cortés H, Albrecht T, Prat S, Weiler EW, Willmitzer L: Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191: 123–128 (1993).

    Article  Google Scholar 

  53. Podila GK, Dickman MB, Kolattukudy PE: Transcriptional activation of a cutinase gene in isolated fungal nuclei by plant cutin monomers. Science 242: 922–925 (1988).

    CAS  Google Scholar 

  54. Preisig CL, Kuć J A: Inhibition by salicylhydroxamic acid, BW755C, eicosatetraenoic acid, and disulfiram of hypersensitive resistance elicited by arachidonic acid or poly-L-lysine in potato tuber. Plant Physiol 84: 891–894 (1987).

    Article  PubMed  CAS  Google Scholar 

  55. Redemann CT, Rappaport L, Thompson RH: Phaseolic acid: a new plant growth regulator from bean seeds. In: Wightman F, Setterfield G (eds) Biochemistry and Physiology of Plant Growth Regulator Substances, pp. 109–124. Runge Press, Ottawa (1968).

    Google Scholar 

  56. Reinbothe S, Reinbothe C, Parthier B: Methyl jasmonate represses translation initiation of a specific set of mRNAs in barley. Plant J 4: 459–467 (1993).

    Article  CAS  Google Scholar 

  57. Reinbothe S, Reinbothe C, Parthier B: Methyl jasmonateregulated translation of nuclear-encoded chloroplast proteins in barley (Hordeum vulgare L. cv. Salome). J Biol Chem 268: 10606–10611 (1993).

    PubMed  CAS  Google Scholar 

  58. Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C, Parthier B: A methyl jasmonate-induced shift in the length of the 5’ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12: 1505–1512 (1993).

    PubMed  CAS  Google Scholar 

  59. Ricker KE, Bostock RM: Eicosanoids in the Phytophthora infestans-potato interaction: lipoxygenase metabolism of arachidonic acid and biological activities of selected lipoxygenase products. Physiol Mol Plant Path 44: 65–80 (1994).

    Article  CAS  Google Scholar 

  60. Schildknechkt VH, Rauch G: Die chemische Natur der Luftphytoncide von Blattpflanzen insbesondere von Robinia pseudoacacia Z Naturforsch 166: 422–429 (1961).

    Google Scholar 

  61. Schweizer P, Gees R, Mösinger E: Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L.) with powdery mildew Erysiphe graminis f.sp. hordei. Plant Physiol 102: 503–511 (1993).

    PubMed  CAS  Google Scholar 

  62. Sembdner G, Parthier B: The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44: 569–589 (1993).

    Article  CAS  Google Scholar 

  63. Spaink HP: Rhizobial lipo-oligosaccharides: answers and questions. Plant Mol Biol 20: 977–986 (1992).

    Article  PubMed  CAS  Google Scholar 

  64. Spaink HP, Sheeley DM, van Brussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJJ: A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354: 125–130 (1991).

    Article  PubMed  CAS  Google Scholar 

  65. Staswick PE, Huang J-F, Yoon R: Nitrogen and methyl jasmonate induction of soybean vegetative storage protein genes. Plant Physiol 96: 130–136 (1991).

    Article  PubMed  CAS  Google Scholar 

  66. Staswick PE: Jasmonate, genes, and frageant signals. Plant Physiol 99: 804–807 (1992).

    Article  PubMed  CAS  Google Scholar 

  67. Staswick PE, Su W, Howell SH: Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89: 6837–6840 (1992).

    Article  PubMed  CAS  Google Scholar 

  68. Strong FE, Kruitwagen E: Traumatic acid: an accelerator of abscission in cotton explants. Nature 215: 1380–1381 (1967).

    Article  CAS  Google Scholar 

  69. Takai Y, Kikkawa U, Kaibuchi K, Nishizuka Y: Membrane phospholipid metabolism and signal transduction for protein phosphorylation. Adv Cyclic Nucl Prot Phosph Res 18: 119–149 (1984).

    CAS  Google Scholar 

  70. Ueda J, Kato J: Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.) Plant Physiol 66: 246–249 (1980).

    Article  PubMed  CAS  Google Scholar 

  71. Vaughn SF, Gardner HW: Lipoxygenase-derived aldehydes inhibit fungi pathogenic on soybean. J Chem Ecol 19: 2337–2345 (1993).

    Article  CAS  Google Scholar 

  72. Vick BA: Oxygenated fatty acids of the lipoxygenase pathway. In: Moore TS (ed) Lipid Metabolism in Plants, pp. 167–191. CRC Press, London (1993).

    Google Scholar 

  73. Wasternack C, Atzorn R, Blume B, Leopold J, Parthier B: Ursolic acid inhibits synthesis of jasmonate-induced proteins in barley leaves. Phytochemistry 35: 49–54 (1994).

    Article  CAS  Google Scholar 

  74. Weiler WE: Octadecanoid-derived signalling molecules involved in touch perception in a higher plant. Bot Acta 106: 2–4 (1993).

    CAS  Google Scholar 

  75. Weiler WE, Albrecht T, Groth B, Xia Z-Q, Luxem M, Liss H, Andert L, Spengler P: Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica. Phytochemistry 32: 591–600 (1993).

    Article  CAS  Google Scholar 

  76. Yoshikara T, Omer E-SA, Koshino H, Sakamura S, Kikuta Y, Koda Y: Structure of a tuber-inducing stimulus from potato leaves. Agric Biol Chem 53: 2835–2837 (1989).

    Article  Google Scholar 

  77. Zimmerman DC, Coudron CA: Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecenoic acid. Plant Physiol 63: 536–541 (1979).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Palme

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Farmer, E.E. (1994). Fatty acid signalling in plants and their associated microorganisms. In: Palme, K. (eds) Signals and Signal Transduction Pathways in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0239-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0239-1_11

  • Received:

  • Revised:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4107-2

  • Online ISBN: 978-94-011-0239-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics