Skip to main content

Biophotolysis, Hydrogen Production and Algal Culture Technology

  • Chapter
Hydrogen Energy System

Part of the book series: NATO ASI Series ((NSSE,volume 295))

Abstract

In this essay the importance and place of biophotolysis in the hydrogen energy system is described. The biophotolysis of water is achieved by two biochemical processes carried out by the activity of chlorophyl containing reaction centres coupled to hydrogenase and nitrogenase. Microalgae belonging to the classes Chlorophyceae and Cyanophyceae can produce molecular hydrogen by the decomposition of water using solar energy. Among Anoxyphotobacteria organisms of the families Chromatiaceae and Chlorobiaceae are also used for the bioengineering development of biophotolysis. A review is presented of the organisms and the processes involved in the context of their applications for algal culture technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benemann, J.R. (1989) ‘The future of microalgal biotechnology’, in R.C. Cresswell, T.A.V. Rees & N. Shah (eds.), Algal and Cyanobacterial Biotechnology, Longman Scientific & Technical, Harlow, pp. 317–337.

    Google Scholar 

  • Bergene, T. & Skulberg, O.M. (1994) ‘Naturen som veiviser mot morgendagens energisamfunn’, Naturen 118, 14–19.

    Google Scholar 

  • Borowitzka, M.A. & Borowitzka, L.J. (1988) ‘Micro-algal Biotechnology’, Cambridge University Press, Cambridge, 477 pp.

    Google Scholar 

  • Brody, M. & Brody, S.S. (1962) ‘Light reactions in photosynthesis’, in R.A. Lewin (ed.), Physiology and Biochemistry of Algae, Academic Press, New York, pp. 3–23.

    Google Scholar 

  • Cammack, R., Hall, D.O. & Rao, K.K. (1985) ‘Hydrogenases. Structure and applications in hydrogen production’, in R.K. Poole & C.S. Dow (eds.), Microbial Gas Metabolism, Academic Press, London, pp. 75–102.

    Google Scholar 

  • Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (1994) ‘Süsswasserflora von Mitteleuropa. Cyanophyceae’, Band 19, Gustav Fischer Verlag, Stuttgart, (in press).

    Google Scholar 

  • Gaffron, H. & Rubin, J. (1942) ‘Fermentative and photochemical production of hydrogen in algae’, J. gen. Physiol. 26, 219–240.

    Article  Google Scholar 

  • Giesel, H.B. & Schilling, H.-D. (1982) ‘Das kleine Energilexikon’, Verlag Glück auf GMBH, Essen, 222 pp.

    Google Scholar 

  • Greenbaum, E. (1991) ‘Hydrogen production by photosynthetic water splitting’, in T.N. Veziroglu & P.K. Takahashi (eds.), Hydrogen Energy Progress VIII, Proceedings of the 8th World Hydrogen Energy Conference, Honolulu and Waikoloa, Hawaii, USA, Pergamon Press, New York, pp. 743–754.

    Google Scholar 

  • Grobbelaar, J.U. (1982) ‘Potentials of algal production’, Water SA 8(2), 79–85.

    Google Scholar 

  • Gudin, C. & Thepenier, C. (1986) ‘Bioconversion of solar energy into organic chemicals by microalgae’, Advances in Biotechnological Processes 6, 73–110.

    Google Scholar 

  • Hall, D.O., Rosillo-Calle, F., Williams, R.H. & Woods, J. (1993) ‘Biomass for energy: Supply prospects’, in T.B. Johansson, H. Kelly, A.K.N. Reddy & R.H. Williams (eds.), Renewable Energy. Sources for Fuels and Electricity, Earthscan Publications Ltd, London, pp. 593–651.

    Google Scholar 

  • Harris, E.H. (1989) ‘The Chlamydomonas Sourcebook. A Comprehensive Guide to Biology and Laboratory Use’, Academic Press, London, 780 pp.

    Google Scholar 

  • Hunter, C.N. & Mann, N.H. (1992). ‘Genetic manipulation of photosynthetic prokaryotes’, in N.H. Mann & N.G. Carr (eds.), Photosynthetic Prokaryotes, Plenum Press, New York, pp. 153–179.

    Chapter  Google Scholar 

  • Hurlbut, J. (1976) ‘The Planet we Live on’, Harry N. Abrams, Inc., New York, 527 pp.

    Google Scholar 

  • Johansson, T.B., Kelly, H., Reddy, A.K.N & Williams, R.H. (1993) ‘Renewable Energy. Sources for Fuels and Electricity’, Earthscan Publications Ltd, London, 1160 pp.

    Google Scholar 

  • Kerby, N.W. & Rowell, PO. (1992) ‘Potential and commercial applications for photosynthetic prokaryotes’, in N.H. Mann & N.G. Carr (eds.), Photosynthetic Prokaryotes, Plenum Press, London, pp. 233–265.

    Chapter  Google Scholar 

  • Kessler, E. (1974) ‘Hydrogenase, photoreduction and anaerobic growth’, in W.D.P. Stewart (ed.), Algal Physiology and Biochemistry, University of California Press, Berkely, pp. 456–473.

    Google Scholar 

  • Kumazawa, S. & Shimamura, K. (1993). ‘Photosynthesis-dependent production of H2 by marine N2-fixing cyanobacterium, Anabaena sp. TU37-1’, J. Mar. Biotechnol. 1, 159–162.

    Google Scholar 

  • Lambert, G.R. & Smith, G.D. (1981) ‘The hydrogen metabolism of cyanobacteria (blue-green algae)’, Biol. Rev. 56, 589–660.

    Article  Google Scholar 

  • Lembi, C.A. & Waaland, J.R. (1988) ‘Algae and Human Affairs’, Cambridge University Press, Cambridge, 590 pp.

    Google Scholar 

  • Mann, N.H. & Carr, N.G. (1992) ‘Photosynthetic Prokaryotes’, Plenum Press, London, 275 pp.

    Chapter  Google Scholar 

  • Markov, S.A., Lichtl, R., Rao, K.K. & Hall D.O. (1993) ‘A hollow fibre photobioreactor for continuous production of hydrogen by immobilized cyanobacteria under partial vacuum’, Int. J. Hydrogen Energy 18(11), 901–906.

    Article  Google Scholar 

  • Mitsui, A., Philips, E.J., Kumazawa, S., Reddy, K.J., Ramachandran, S., Matsunaga, T., Haynes, L. & Ikemoto, H. (1983) ‘Progress in research toward outdoor biological hydrogen production using solar energy, sea water, and marine photosynthetic microorganisms’, Annals N.Y. Acad. Sci. 413, 514–530.

    Article  Google Scholar 

  • Ochiai, H., Shibata, H., Sawa, Y., Shoga, M. & Ohta, S. (1983) ‘Properties of semiconductor electrodes coated with living films of cyanobacteria’, Appl. Biochem. Biotechnol. 8, 289– 303.

    Article  Google Scholar 

  • Ogden, J.M. & Nitsch, J. (1993). ‘Solar hydrogen’, in T.B. Johansson, H. Kelly, A.K.N. Reddy & R.H. Williams (eds.), Renewable Energy. Sources for Fuels and Electricity, Earthscan Publications Ltd, London, 1160 pp.

    Google Scholar 

  • Ormerod, J.G. (1992) ‘Physiology of the photosynthetic prokaryotes’, in N.H. Mann & N.G. Carr (eds.), Photosynthetic Prokaryotes, Plenum Press, New York, pp. 93–120.

    Chapter  Google Scholar 

  • Ormerod, J.G., Ormerod, K.S. & Gest, H. (1961). ‘Light dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria, relationship with nitrogen metabolism’, Arch. Biochem. Biophys. 94, 449–463.

    Article  Google Scholar 

  • Pfennig, N. (1977) ‘Phototrophic green and purple bacteria: A comparative systematic survey’, Ann., Rev. Microbiol., 31, 275–290.

    Article  Google Scholar 

  • Pirt, S.J., Lee, Y.K., Walach, M.R., Pirt, M.W., Balyuzi, H.H.M., & Bazin, M.J. (1983) ‘A tubular bioreactor for photosynthetic production of biomass from carbon dioxide. Design and performance’, J.Chem. Technol. Biotechnol. 33B, 33–50.

    Google Scholar 

  • Porter, G. (1989) ‘Solar energy from photochemistry’, in J. Barber & R. Malkin (eds.), Techniques and New Developments in Photosynthesis Research, Plenum Press, New York, pp. 3–7.

    Chapter  Google Scholar 

  • Rao, K.K. & Hall, D.O. (19888) ‘Hydrogenases: Isolation and assay’, in L. Packer & A.N. Glazer (eds.), Cyanobacteria, Methods in Enzymology, Volume 167, Academic Press, London, pp. 501–509.

    Chapter  Google Scholar 

  • Reed, D.W. & Clayton, R.K. (1968) ‘Isolation of a reaction center fraction from Rhodopseudomonas sphaeroides’, Biochem. Biophys. Res. Commun. 30, 471–475.

    Article  Google Scholar 

  • Richmond, A. (1988) ‘Spirulina’, in M.A. Borowitzka & L.J. Borowitzka (eds.), Micro-algal Biotechnology, Cambridge University Press, Cambridge, pp. 85–21.

    Google Scholar 

  • Richmond, A. (1992) ‘Mass culture of cyanobacteria’, in N.H. Mann & N.G. Carr (eds.), Photosynthetic Prokaryotes, Plenum Press, New York, pp. 181–210.

    Chapter  Google Scholar 

  • Richter, G. (1978) ‘Plant metabolism. Physiology and Biochemistry of Primary Metabolism’, Georg Thieme Publishers, Stuttgart, 475 pp.

    Google Scholar 

  • Saunders, V.A. (1992): ‘Genetics of the photosynthetic prokaryotes’, in N.H.Mann & N.G. Carr (eds.), Photosynthetic Prokaryotes, Plenum Press, New York, pp. 121–152.

    Chapter  Google Scholar 

  • Schlegel, H.G. (1985) ‘Allgemeine Microbiologie’, Georg Thieme Verlag, Stuttgart, 571 pp.

    Google Scholar 

  • Schlegel, H.G. & Schneider, K. (1978). ‘Hydrogenases: Their Catalytic Activity Structure, and Function’, Erich Goltze KG, Göttingen.

    Google Scholar 

  • Serebriakova, L., Zorin, N.A. & Lindblad, P. (1994) ‘Reversible hydrogenase in Anabaena variabilis ATCC 29413’, Arch. Microbiol. 161, 140–144.

    Google Scholar 

  • Skulberg, O.M. (1992) ‘Hydrogen som energibeærer. Biofotolytisk produksjon av hydrogen med bruk av blÃ¥grønnalger/alger’, Norsk institutt for vannforskning, Oslo, 27 pp.

    Google Scholar 

  • Skulberg, O.M. (1994) ‘Oscillatorialean cyanoprokaryotes and their application for algal culture technology’, Arch. Hydrobiol./Suppl., Algological Studies 75, (in press).

    Google Scholar 

  • Skulberg, R. & Skulberg, O.M. (1990) ‘Forskning med algekulturer -NIVAs kultursamling av alger. Research with algal cultures. NIVA’s Culture Collection of Algae’, Norsk institutt for vannforskning, Oslo, 32 pp.

    Google Scholar 

  • Smith, G.D., Ewart, G.D. & Tucker, W. (1992) ‘Hydrogen production by cyanobacteria’, J. Hydrogen Energy 17(9), 695–698.

    Article  Google Scholar 

  • Stal, L.J. (1988) ‘Nitrogen fixation in cyanobacterial mats’, in L. Packer & A.N. Glazer (eds.), Cyanobacteria, Methods in Enzymology, Volume 167, Academic Press, London, pp. 474– 484.

    Chapter  Google Scholar 

  • Staley, J.T., Bryant, M.P., Pfennig, N. & Holt, J.G. (1989) ‘Bergey’s Manual of Systematic Bacteriology’, Vol. 3, Williams & Wilkins, Baltimore.

    Google Scholar 

  • Stewart, W.P. (1980) ‘Some aspects of structure and function in N2-fixing cyanobacteria’, Ann. Rev. Microbiol 34, 497–536.

    Article  Google Scholar 

  • Tanaka, K., Kashiwagi, N. & Ogawa, T. (1988) ‘Effects of light on the electrical output of bioelectrochemical fuel cells containing Anabaena variabilis M-2: mechanisms of the postillumination burst’, J. Chem. Technol. Biotechnol. 42, 235–240.

    Article  Google Scholar 

  • Tandeau de Marsac, N. & Houmand, J. (1987) ‘Advances in cyanobacterial molecular genetics’, in P. Fay & C. Van Baalen (eds.), The Cyanobacteria, Elsevier, Amsterdam, pp. 251–303.

    Google Scholar 

  • Van Baalen, C. (1987) ‘Nitrogen fixation’, in P. Fay & C. Van Baalen (eds.), The Cyanobacteria, Elsevier, Amsterdam, pp. 187–198.

    Google Scholar 

  • Zaborsky, O.R. (1982) ‘CRC Handbook of Biosolar Resources’, Volume 1, Part 1, Basic principles, CRC Press Inc., Boca Rator, 480 pp.

    Google Scholar 

  • Zürrer, H. & Bachofen, R. (1979) ‘Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum’, Appl. Environ. Microbiol. 37, 789–793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Skulberg, O.M. (1995). Biophotolysis, Hydrogen Production and Algal Culture Technology. In: Yürüm, Y. (eds) Hydrogen Energy System. NATO ASI Series, vol 295. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0111-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0111-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4053-2

  • Online ISBN: 978-94-011-0111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics