Skip to main content

Improved Hydrocarbon Recovery

  • Chapter
Petroleum Engineering

Abstract

The recovery of light and medium gravity oils by displacement with gas and water, and the recovery of relatively dry gases by expansion, can be considered conventional recovery processes. These techniques lead to gas recovery factors in the range 70–80% and oil recovery factors in the range 20–50%. Any improvement to gas recovery is very limited in terms of design of the recovery mechanism, and efficiency increase mainly involves acceleration of income through well location, well completion and compression choice. Oil recovery projects, on the other hand, appear to offer significant potential for further reducing residual oil saturation [1,2,3,4,6,7,8,11]. In practice, however, the distribution of residual oil in a reservoir is of particular significance; more so than the total oil volume. It can be argued that infili drilling is an effective improved recovery process [83] as is increasing produced water handling facilities. The term residual oil implies nothing absolute about oil saturation and it is process and reservoir property dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bond, D.C. (Ed.): Determination of Residual Oil Saturation, Interstate Oil Compact Commission (1978), Oklahoma.

    Google Scholar 

  2. Poettman, F.H. (Ed.): Secondary and Tertiary Oil Recovery Processes, Interstate Oil Compact Commission (1974), Oklahoma.

    Google Scholar 

  3. Latil, M.: Enhanced Oil Recovery, IFP Publications, Graham and Trotman, London (1980).

    Google Scholar 

  4. van Poollen, H.K.: Fundamentals of Enhanced Oil Recovery, Penwell Books, Tulsa (1980).

    Google Scholar 

  5. Klins, M.A.: Carbon Dioxide Flooding, IHRDC, Boston. (1984).

    Google Scholar 

  6. Stalkup, F.I.: Miscible Displacement, SPE Monograph No 8, Soc. Pet. Engr., Dallas (1983).

    Google Scholar 

  7. Shah, D.O. (Ed.): Surface Phenomena in Enhanced Oil Recovery, Plenum Press, NY (1981).

    Google Scholar 

  8. Shah, D.O. and Schechter, R.S. (Eds): Improved Oil Recovery by Surfactant and Polymer Flooding, Academic Press (1977).

    Google Scholar 

  9. Katz, M.L. and Stalkup, R.I.: Oil recovery by miscible displacement, Proc. 11th World Pet. Cong. London (1983), RTD 2 (1).

    Google Scholar 

  10. Thomas, E.C. and Ausburn, B.E.: Determining swept zone residual oil saturation in a slightly consolidated Gulf Coast sandstone reservoir, JPT (April 1979), 513.

    Google Scholar 

  11. Bath, P.G.H., van der Burgh, and Ypma, J.G.J.: Enhanced oil recovery in the North Sea, Proc. 11th World Pet. Cong. London (1983), ATD 2 (2).

    Google Scholar 

  12. Mattax, C.C., Blackwell, R.J. and Tomich, J.F.: Recent advances in surfactant flooding, Proc. 11th World Pet. Cong. London (1983), RTD (3).

    Google Scholar 

  13. Putz, A., Bosio, J., Lambrid, J. and Simandoux, P.: Summary of recent French work on surfactant injection, Proc. 11th World Pet. Cong. London (1983), RTD 2 (4).

    Google Scholar 

  14. Kuuskraa, V., Hammershaimb, E.C. and Stosor, G.: The efficiency of enhanced oil recovery techniques: a review of significant field tests, Proc. 11th World Pet. Cong. London (1983), RP13.

    Google Scholar 

  15. Grist, D.M., Hill, V.P. and Kirkwood, F.G.: Offshore Enhanced Oil Recovery, IP 84–008 reprinted from Petroleum Review (July 1984), 40.

    Google Scholar 

  16. Passmore, M.J. and Archer, J.S.: Thermal properties of reservoir rocks and fluids, In Developments in Petroleum Engineering-1. (Ed. Dawe and Wilson ), Elsevier, Amsterdam (1985).

    Google Scholar 

  17. Archer, J.S.: Surfactants and polymers — state of the art, Proc. Conf. on Improved Oil Recovery, Aberdeen (Nov. 1984), SREA.

    Google Scholar 

  18. Macadam, J.M.: North Sea stimulation logistics and requirements, SPE 12999, Proc. Europ. Off. Pet. Conf. London 1984, Soc. Pet. Engr.

    Google Scholar 

  19. Cooper, R.E. and Bolland, J.A.: Effective diversion during matrix acidisation of water injection wells, OTC 4795, Proc. 16th Ann. OTC, Houston (1984).

    Google Scholar 

  20. Sorbie, K.S., Robets, L.J. and Foulser, R.W.: Polymer flooding calculations for highly stratified Brent sands in the North Sea, Proc. 2nd Europ. Symp. on Enhanced Oil Recovery, Paris (1982).

    Google Scholar 

  21. Taber, J.J.: Research on EOR, past, present and future, In Surface Phenomena in EOR (Ed. Shah ), Plenum Pub, NY (1981), 13.

    Google Scholar 

  22. Shah, D.O.: Fundamental aspects of surfactant polymer flooding processes, Proc. 1st Europ. Symp. EOR, Bournemouth (1981), 1.

    Google Scholar 

  23. Nelson, R.C. and Pope, G.A.: Phase relationships in chemical flooding, Soc. Pet. Eng. J. 18 (5), (1978), 325.

    Google Scholar 

  24. Pope, G.A. and Nelson, R.C.: A chemical flooding compositional simulator, SPEJ 18 (1979), 339.

    Google Scholar 

  25. National Petroleum Council Enhanced Oil Recovery,NPC Report (June 1984), Washington.

    Google Scholar 

  26. Coulter, S.R. and Wells, R.D.: The advantage of high proppant concentration in fracture simulation, JPT (June 1972), 643.

    Google Scholar 

  27. Doscher, T.M., Oyekan, R. and El-Arabi: The displacement of crude oil by CO2 and N2 in gravity stabilised systems, SPEJ 24 (1984), 593.

    Google Scholar 

  28. Whitson, C.H.: Effect of C7+ properties on equation of state predictions, SPEJ 24 (1984), 685.

    Article  Google Scholar 

  29. Bang, H.W. and Caudle, B.H.: Modelling of a miscellar/polymer process, SPEJ (1984), 617.

    Google Scholar 

  30. Thomas, C.P., Fleming, P.D. and Winter, W.W.: A ternary, 2 phase mathematical model of oil recovery with surfactant systems, SPEJ 24 (1984), 606.

    Article  Google Scholar 

  31. Chase, C.A. and Todd, M.R.: Numerical simulation of CO2 flood performance, SPEJ (1984), 597.

    Google Scholar 

  32. Stalkup, F.I.: Miscible Displacement, SPE Monograph No 8, Soc. Pet. Engr., Dallas (1983).

    Google Scholar 

  33. Fulscher, R.A., Ertekin, T. and Stahl, C.D.: Effect of capillary number and its constituents on two phase relative permeability curves, JPT (Feb. 1985), 249.

    Google Scholar 

  34. Reitzel, G.A. and Callow, G.O.: Pool description and performance analysis leads to understanding Golden Spike’s miscible flood, JPT (July 1977), 867.

    Google Scholar 

  35. Kidwell, C.M. and Guillory, A.J.: A recipe for residual oil saturation determination, JPT (Nov. 1980), 1999.

    Google Scholar 

  36. Perry, G.E. and Kidwell, C.M.: Weeks Island `S’ sand reservoir B gravity stable miscible CO2 displacement, Proc. 5th Ann. DOE Symp. EOR (1979).

    Google Scholar 

  37. Wilson, D.C., Prior, E.M. and Fishman, D.M.: An analysis of recovery techniques in large offshore gas condensate fields, EUR 329, Proc. Europ. Pet. Conf. London (1982), Soc. Pet. Eng.

    Google Scholar 

  38. Sigmund, P. et al.: Laboratory CO2 floods and their computer simulation, Proc. 10th World Pet. Cong. 3 (1979), 243.

    Google Scholar 

  39. Katz, D.L. and Firoozabadi, A.: Predicting phase behaviour of condensate/crude oil systems using methane interaction coefficients, JPT (Nov. 1978), 1649.

    Google Scholar 

  40. Rathmell, J., Braun, P.H. and Perkins, T.K.: Reservoir waterflood residual oil saturation from laboratory tests, JPT (Feb. 1973), 175.

    Google Scholar 

  41. Schechter, R.S., Lam, C.S. and Wade, W.H.: Mobilisation of residual oil under equilibrium and non equilibrium conditions, SPE 10198, Proc. 56th Ann. Fall Mtg. (1981), Soc. Pet. Eng.

    Google Scholar 

  42. Mahers, E.G. and Dawe, R.A.: The role of diffusion and mass transfer phenomena in the mobilisation of oil during miscible displacement, Proc. Europ. Symp. EOR (1982).

    Google Scholar 

  43. Wall, C.G., Wheat, M.R., Wright, R.J. and Dawe, R.A.: The adverse effects of heterogeneities on chemical slugs in EOR, Proc. lEA Workshop on EOR, Vienna (Aug. 1983).

    Google Scholar 

  44. Aziz, K.: Complete modelling of EOR processes, Proc. Europ. Symp. EOR, Bournemouth (1981), 367.

    Google Scholar 

  45. Bristow, B.J.S. de: The use of slim tube displacement experiments in the assessment of miscible gas projects, Proc. Europ. Symp. EOR, Bournemouth (1981), 467.

    Google Scholar 

  46. Wilson, D.C., Tan, T.C. and Casinader, P.C.: Control of numerical dispersion in compositional simulation, Proc. Europ. Symp. EOR, Bournemouth (1981), 425.

    Google Scholar 

  47. Claridge, E.L.: CO2 flooding strategy in a communicating layered reservoir, JPT (Dec. 1982), 2746.

    Google Scholar 

  48. Koval, E.J.: A method for predicting the performance of unstable miscible displacement in heterogeneous media, SPEJ (June 1963), 145.

    Google Scholar 

  49. Metcalfe, R.S.: Effects of impurities on minimum miscibility pressures and minimum enrichment levels for CO2 and rich gas displacements, SPEJ (April 1982), 219.

    Google Scholar 

  50. Jennings, N.Y., Johnson, C.E. and McAuliffe, C.D.: A caustic waterflooding process for heavy oils, JPT (Dec. 1974), 1344.

    Google Scholar 

  51. Melrose, J.C. and Brandner, C.F.: Role of capillary forces in determining microscopic displacement efficiency for oil recovery by waterflooding, J.Can. Pet. Tech. (Oct. 1974), 54.

    Google Scholar 

  52. Chesters, D.A., Clark, C.J. and Riddiford, F.A.: Downhole steam generation using a pulsed burner, Proc. 1st Europ. Symp. EOR Bournemouth (1981), 563.

    Google Scholar 

  53. Lemonnier, P.: Three dimensional numerical simulation of steam injection, Proc. 1st Europ. Symp. EOR 7Bournemouth (1981), 379.

    Google Scholar 

  54. Risnes, R., Dalen, V. and Jensen, J.I.: Phase equilibrium calculations in the near critical region, Proc. 1st Europ. Symp. EOR Bournemouth (1981), 329.

    Google Scholar 

  55. Sayegh, S.G. and McCafferty, F.G.: Laboratory testing procedures for miscible floods, Proc. 1st Europ. Symp. EOR Bournemouth (1981), 285.

    Google Scholar 

  56. Vogel, P. and Pusch, G.: Some aspects of the injectivity of non Newtonian fluids in porous media, Proc. 1st Europ. symp. EOR Bournemouth (1981), 179.

    Google Scholar 

  57. Brown, C.E. and Langley, G.O.: The provision of laboratory data for EOR simulation, Proc. 1st Europ. Symp. EOR Bournemouth (1981), 81.

    Google Scholar 

  58. Archer, J.S.: Thermal properties of heavy oil rock and fluid systems, Proc. Conf. Problems Associated with the Production of Heavy Oil, Oyez Scientific and Technical Services (March 1985).

    Google Scholar 

  59. White, J.L. Goddard, J.E. and Phillips, H.M.: Use of polymers to control water production in oil wells, JPT (Feb. 1973), 143.

    Google Scholar 

  60. Bing, P.C., Bowers, B. and Lomas, R.H.: A model for forecasting the economic potential for enhanced oil recovery in Canada, J. Can. Pet. Tech. ( Nov.—Dec. 1984 ), 44.

    Google Scholar 

  61. Meyer, R.F. and Steele, C.T.: The future of heavy crude oils and tar sands, Proc. 1st Int. Conf. (June 1979), UNITAR (McGraw Hill Inc., NY).

    Google Scholar 

  62. Offeringa, J., Barthel, R. and Weijdema, J.: Keynote paper: thermal recovery methods, Proc. 1st Europ. Symp. EOR Bournemouth (Sept. 1981), 527.

    Google Scholar 

  63. Nakorthap, K. and Evans, R.D.: Temperature dependent relative permeability and its effect on oil displacement by thermal methods, SPE 11217, Proc. 57th Ann. Fall Mtg. SPE (Sept. 1982).

    Google Scholar 

  64. Okandan, E. (Ed.): Heavy Crude Oil Recovery, Nato ASI Series, Martinus Nijhoff Pub. (1984), The Hague.

    Google Scholar 

  65. Spivak, A. and Dixon, T.N.: Simulation of gas condensate reservoirs, SPE 4271, 3rd Symp. Numerical Simulation (1973), Houston.

    Google Scholar 

  66. Dystra, H.: Calculated pressure build up for a low permeability gas condensate well, JPT (Nov. 1961), 1131.

    Google Scholar 

  67. Ham, J.D. Brill, J.P. and Eilerts, C.K.: Parameters for computing pressure gradients and the equilibrium saturation of gas condensate fluids flowing in sandstones, SPE J. (June 1974), 203.

    Google Scholar 

  68. Saeidi, A. and Handy, L.L.: Flow of condensate and highly volatile oils through porous media, SPE 4891, Proc. California Reg. Mtg. (April 1974), Los Angeles.

    Google Scholar 

  69. Fussell, D.D.: Single well performance prediction for gas condensate reservoirs, JPT (July 1973), 860.

    Google Scholar 

  70. Eaton, B.A. and Jacoby, R.H.: A new depletion performance correlation for gas condensate reservoir fluid, JPT (July 1965), 852.

    Google Scholar 

  71. Ruedelhuber, F.O. and Hinds, R.F.: A compositional material balance method for prediction of recovery from volatile oil depletion drive reservoirs, JPT (Jan. 1957), 19.

    Google Scholar 

  72. Firoozabadi, A., Hekim, Y. and Katz, D.L.: Reservoir depletion calculations for gas condensates using extended analyses in the Peng-Robinson equation of state, Can. J. Chem. Eng. 56 (Oct. 1978), 610.

    Article  Google Scholar 

  73. Katz, D.L.: Possibility of cycling deep depleted oil reservoirs after compression to a single phase, Trans. AIME 195 (1952), 175.

    Google Scholar 

  74. Sprinkle, T.L., Merrick, R.J. and Caudle, B.: Adverse influence of stratification on a gas cycling project, JPT (Feb 1971), 191.

    Google Scholar 

  75. Holst, P.H. and Zadick, T.W.: Compositional simulation for effective reservoir management, JPT (March 1982), 635.

    Google Scholar 

  76. Fernandes Luque, R., Duns, H. and van der Vlis, A.C.: Research on improved hydrocarbon recovery from chalk deposits, Proc. Symp. New Technologies for Exploration and Exploitation of Oil and Gas Resources, Luxembourg (1979), Graham and Trotman.

    Google Scholar 

  77. Perry, G.E.: Weeks Island `S’ sand reservoir B gravity stable miscible CO2 displacement, SPE/DOE 10695, Proc. 3rd Jt. Symp. EOR (April 1982), 309.

    Google Scholar 

  78. Elias, R., Johnstone, J.R. and Krause, J.D.: Steam generation with high TDS feedwater, SPE 8819, Proc. 1st Jt. SPE/DOE Symp. EOR, Tulsa (April 1980), 75.

    Google Scholar 

  79. Greaves, M. and Patel, K.M.: Surfactant dispersion in porous media, Proc. 2nd Europ. Symp. EOR, Paris (Nov. 1982), 99.

    Google Scholar 

  80. Rovere, A., Sabathier, J.C. and Bossie Codreanu, D.: Modification of a black oil model for simulation of volatile oil reservoirs, Proc. 2nd Europ. Symp. EOR, Paris (Nov. 1982), 359.

    Google Scholar 

  81. Monslave, A., Schechter, R.S. and Wade, W.H.: Relative permeabilities of surfactant, steam, water systems, SPE/DOE 12661, Proc. SPE/DOE Fourth Symp. EOR (April 1984), 315.

    Google Scholar 

  82. Bragg, J.R. and Shallenberger, L.K.: Insitu determination of residual gas saturation by injection and production of brine, SPE 6047, Proc. 51st Ann. Fall Mtg. (1976).

    Google Scholar 

  83. Driscoll, V.J. and Howell, R.G.: Recovery optimization through infili drilling concepts, SPE 4977, Proc. 49th Ann. Fall Mtg. (1974).

    Google Scholar 

  84. Kyte, J.R. et al.: Mechanism of water flooding in the presence of free gas, Trans. AIME 207 (1956), 915.

    Google Scholar 

  85. Weyler, J.R. and Sayre, A.T.: A novel pressure maintenance operation in a large stratigraphic trap, JPT (Aug. 1959), 13.

    Google Scholar 

  86. Whitson, C.H.: Practical aspects of characterising petroleum fluids, Proc. Conf. North Sea Condensate Reservoirs and their Development, Oyez Sci. Tech. Serv. (May 1983), London.

    Google Scholar 

  87. Prats, M.: Thermal Recovery, SPE Monograph Vol 7, Soc. Pet. Eng (1982), Dallas.

    Google Scholar 

  88. Coats, K.H.: Simulation of gas condensate reservoir performance. JPT (Oct. 1985), 1870.

    Google Scholar 

  89. Schirmer, R.M. and Eson, R.L.: A direct-fired down hole steam generator — from design to field test JPT (Oct 1985), 1903

    Google Scholar 

  90. Nierode, D.E.: Comparison of hydraulic fracture design methods to observed field results JPT (Oct. 1985), 1831.

    Google Scholar 

  91. Weiss, W.W. and Baldwin, R.: Planning and implementing a large-scale polymer flood. JPT (April 1985), 720.

    Google Scholar 

  92. Kilpatrick, P.K., Scriven, L.E. and Davis, H.T.: Thermodynamic modelling of quaternary systems: oil/brine/surfactant/alcohol. SPEJ 25 (1985), 330.

    Article  Google Scholar 

  93. Clancy, J.P. et. al.: Analysis of nitrogen injection projects to develop screening guides and offshore design criteria. JPT (June 1985), 1097.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 J S Archer and C G Wall

About this chapter

Cite this chapter

Archer, J.S., Wall, C.G. (1986). Improved Hydrocarbon Recovery. In: Petroleum Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9601-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9601-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-86010-715-6

  • Online ISBN: 978-94-010-9601-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics