Skip to main content

Abstract

High-purity monocrystalline aluminum disks of three crystallographic orientations were subjected to carefully controlled planar impact producing low levels of spall damage. This damage was observed to consist of voids of essentially octahedral form having {111} planes as faces. To describe the growth of these voids we propose a kinematical model based on the motion of edge dislocations. Dynamical equations describing the rate of growth of an individual void are obtained by applying established concepts of dislocation mechanics to the kinematical model.

This work was supported by the U.S. Atomic Energy Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Butcher, B. M., Barker, L. M., Munson, D. E., and Lundergan, C. D., ‘Influence of stress history on time-dependent spall in metals’, AIAA JI, 2, 977–990 (1964).

    Article  Google Scholar 

  2. Oscarson, J. H., and Graff, K. F., Summary Report on Spall Fracture and Dynamic Response of Materials, Battelle Memorial Institute, Report BAT-197A-4–3 (1968).

    Google Scholar 

  3. Gilman, J. J., and Tuler, Floyd R., `Dynamic fracture by spallation’, Int. J. Fract. Mech., 6, 169–182 (1970).

    Google Scholar 

  4. Smith, J. H., `Three low-pressure spall thresholds in copper’, ASTM Special Technical Publication No. 336, pp. 264–281 (1963).

    Google Scholar 

  5. Barbee, T., Seaman, L., and Crewdson, R. C., `Dynamic fracture of homogeneous materials’, Technical Report No. AFWL-TR-70–99, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico (Nov. 1970).

    Google Scholar 

  6. Karnes, C. H., `The plate impact configuration for determining mechanical properties of materials at high strain rates’, Mechanical Behavior of Materials Under Dynamic Loads, pp. 270–293. Springer Verlag, New York (1968).

    Google Scholar 

  7. Stevens, A. L., and Jones, O. E., `Radial stress release phenomena in plate impact experiments: compression-release’, J. Appl. Mech., 39, 359–366 (1972).

    Article  ADS  Google Scholar 

  8. Edwards, R. H., `Stress concentrations around spheroidal inclusions and cavities,’ J. Appl. Mech., 18, 19–30 (1951).

    MathSciNet  MATH  Google Scholar 

  9. Muskelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff, Groningen-Holland (1953).

    Google Scholar 

  10. Stevens, A. L., Davison, Lee, and Warren, W. E., ‘Spall fracture in aluminum monocrystals: a dislocation-dynamics approach,’ J. Appl. Phys., 43 (Nov. 1972).

    Google Scholar 

  11. Kumar, A., Hauser, F. E., and Dorn, J. E., `Viscous drag on dislocations in aluminum at high strain rates’, Acta Met., 16, 1189–1197 (1968).

    Article  Google Scholar 

  12. Johnson, J. N., and Barker, L. M., `Dislocation dynamics and steady-stage plastic wave profiles in 6061–76 aluminum’, J. Appl. Phys., 40, 4320–4334 (1969).

    ADS  Google Scholar 

  13. Vanbueren, H. G., Imperfections in Crystals, p. 74. North-Holland Publishing Co., Amsterdam (1960).

    Google Scholar 

  14. Hull, D., Introduction to Dislocations, p. 21. Pergamon Press, London (1965).

    Google Scholar 

  15. Davison, Lee, and Stevens, A. L., `Continuum measures of spall damage,’ J. Appl. Phys., 43, 988–994 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Stevens, A.L., Davison, L., Warren, W.E. (1973). Void growth during spall fracture of aluminum monocrystals. In: Sih, G.C. (eds) Proceedings of an international conference on Dynamic Crack Propagation. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9253-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9253-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9255-5

  • Online ISBN: 978-94-010-9253-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics