Skip to main content

Interplanetary Magnetic Field Dynamics

The key to space weather monitoring

  • Chapter
Space Storms and Space Weather Hazards

Part of the book series: NATO Science Series ((NAII,volume 38))

Abstract

The role of the IMF in the dynamics of solar wind interaction with the geomagnetosphere was proposed by Dungey in 1961. Early in-situ IMF measurements in the 60's confirmed the association of the magnitude and direction of the IMF with the Kp magnetic activity index. The IMF is a primary force in controlling our local space weather because of the physical process known as reconnection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.-I., 1996. Search for the unknown quantity in the solar wind: A personal account. J. Geophys. Res. 101, 10531–10540.

    Article  ADS  Google Scholar 

  • Axford, W.I., Petschek, H.E. and Siscoe, G.L., 1965. Tail of the magnetosphere. J. Geophys. Res. 65, 1231.

    Article  ADS  Google Scholar 

  • Balogh, A., Smith, E.J., Tsurutani, B.T., Southwood, DJ., Forsyth, R.J. and Horbury, T.S., 1995. The heliospheric magnetic field over the south polar region of the Sun. Science 268, 1007–1010.

    Article  ADS  Google Scholar 

  • Behannon, K.W., 1978. Heliocentric distance dependence of the interplanetary magnetic field. Rev. Geophys. Space Res. 16, 125–145.

    Article  ADS  Google Scholar 

  • Bothmer, V., 1999. Magnetic field structure and topology within CMEs in the solar wind. In: Habbal, S.R., Esser, R., Hollweg, J.V. and Isenberg, PA. (Eds.), CP471, Solar Wind Nine, The American Institute of Physics, 119–126.

    Google Scholar 

  • Bothmer, V., Desai, M.I., Marsden, R.G., Sanderson, T.R., Trattner, K.J., Wenzel, K.-P., Gosling, J.T., Balogh, A., Forsyth, R.J. and Goldstein, B.E., 1996. Ulysses observations of open and closed magnetic field lines within a coronal mass ejection. Astron. Astrophys. 316, 493–498.

    ADS  Google Scholar 

  • Bothmer, V. and Rust, D.M., 1997. The field configuration of magnetic clouds and the solar cycle. In: Coronal Mass Ejections. Geophysical Monograph 99, American Geophysical Union, Washington, 139–146.

    Chapter  Google Scholar 

  • Bothmer, V. and Schwenn, R., 1994. Eruptive prominences as sources of magnetic clouds in the solar wind. Space Science Reviews 70, 215–220.

    Article  ADS  Google Scholar 

  • Bothmer, V. and Schwenn, R., 1995. The interplanetary and solar causes of major geomagnetic storms. J. Geomag. Geoelectr. 47, 1127–1132.

    Article  Google Scholar 

  • Bothmer, V. and Schwenn, R., 1996. Signatures of fast CMEs in interplanetary space. Adv. Space Res. 17(4/5), 319–322.

    Article  ADS  Google Scholar 

  • Bothmer, V. and Schwenn, R., 1998. The structure and origin of magnetic clouds in the solar wind. Ann. Geophysicae 16, 1–24.

    Article  ADS  Google Scholar 

  • Bravo, S., Blanco-Cano, X. and López, C, 1999. Characteristics of interplanetary magnetic clouds in relation to their solar association. J. Geophys. Res. 104, 581–591.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., 1969. Directional discontinuities in the interplanetary magnetic field. Solar Physics 7, 54–71.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., 1988. Magnetic clouds and force-free fields with constant-alpha. J. Geophys. Res. 93, 7217–7224.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., 1991. Magnetic clouds. In: Schwenn, R. and Marsch, E. (Eds.), Physics of the Inner Heliosphere II. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Burlaga, L.F., 1995. Interplanetary magnetohydrodynamics. Oxford Univ. Press.

    Google Scholar 

  • Burlaga, L.F. and Barouch, E., 1976. Interplanetary stream magnetism: Kinematic effects. Astrophys. J. 203, 257.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C, Lin, R.P. and Larson, D.E., 1998. A magnetic cloud containing prominence material: January 1997. J. Geophys. Res. 103, 277–285.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Hundhausen, A.J. and Zhao, X.-P., 1981. The coronal and interplanetary current sheet in early 1976. J. Geophys. Res. 86, 8893–8898.

    Article  ADS  Google Scholar 

  • Burlaga, L.F. and Klein, L.W., 1986. Configurations of corotating shocks in the outer heliosphere. J. Geophys. Res. 91, 8975.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Klein, L.W., Sheeley, Jr., N.R., Michels, D.J., Howard, R.A., Koomen, M.J., Schwenn, R. and Rosenbauer, H., 1982. A magnetic cloud and a coronal mass ejection. Geophys. Res. Lett. 9, 1317–1320.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Lepping, R.P. and Jones, J., 1990. Global configuration of a magnetic cloud. In: Russell, CT., Priest, E.R., and Lee, L.C. (Eds.), Physics of Magnetic Flux Ropes, Geophysical Monograph 58, American Geophysical Union, Washington, 373.

    Chapter  Google Scholar 

  • Burlaga, L.F. and Ness, N.F., 1968. Macro-and microstructure of the interplanetary magnetic field. Can. J. Physics 46, S962–965.

    Article  Google Scholar 

  • Burlaga, L.F. and Ness, N.F., 1969. Tangential discontinuities in the solar wind at 1 AU. Solar Physics 9, 467.

    Article  ADS  Google Scholar 

  • Burlaga, L.F. and Scudder, J., 1975a. Corotating streams and interaction regions. J. Geophys. Res. 80, 4044–4059.

    Article  ADS  Google Scholar 

  • Burlaga, L.F. and Scudder, J., 1975b. Motion of shocks through interplanetary streams. J. Geophys. Res. 80, 4004–4010.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Sittler, E., Mariani, F. and Schwenn, R., 1981. Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations. J. Geophys. Res. 86, 6673–6684.

    Article  ADS  Google Scholar 

  • Chen, J. and Garren, D.A., 1993. Interplanetary magnetic clouds: Topology and driving mechanism. Geophys. Res. Lett. 20, 2319–2322.

    Article  ADS  Google Scholar 

  • Crooker, N.U. and Cliver, E.W., 1994. Postmodern view of M-regions. J. Geophys. Res. 99, 23383–23390.

    Article  ADS  Google Scholar 

  • Dungey, J.W., 1961. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47.

    Article  ADS  Google Scholar 

  • Fairfield, D.H., 1967. Polar magnetic disturbances and the interplanetary magnetic field. Space Research VIII, p. 107.

    Google Scholar 

  • Farrugia, C.J., Scudder, J.D., Freeman, M.P., Janoo, L., Lu, G., Quinn, J.M., Arnoldy, R.L., Torbert, R.B., Burlaga, L.F., Ogilvie, K.W., Lepping, R.P., Lazarus, A.J., Steinberg, J.T., Gratton, F.T. and Rostoker, G., 1998. Geoeffectiveness of three wind magnetic clouds: A comparative study. J. Geophys. Res. 103, 17261–17278.

    Article  ADS  Google Scholar 

  • Feynman, J., 1976. Substorms and the interplanetary magnetic field. J. Geophys. Res. 81, 5551–5555.

    Article  ADS  Google Scholar 

  • Feynman, J. and Gabriel, S.B., 2000. On space weather consequences and predictions. J. Geophys. Res. 105, 10543–10564.

    Article  ADS  Google Scholar 

  • Forsyth, R.J., Balogh, A., Horbury, T.S., Erdös, G., Smith, E.J. and Burton, M.E., 1996. The heliospheric magnetic field at solar minimum: Ulysses observations from pole to pole. Astron. Astrophys. 316, 287–295.

    ADS  Google Scholar 

  • Goldstein, H., 1983. On the field configuration in magnetic clouds. In: Neugebauer, M. (Ed.), CP-2280, Solar Wind Nine, NASA Conf. Publ. NASA, Washington, 731–733.

    Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., and Vasyliunas, V.M., 1994. What is a geomagnetic storm? J. Geophys. Res. 99, 5771–5792.

    Article  ADS  Google Scholar 

  • Gosling, J.T., 1990. Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Russell, CT., Priest, E.R. and Lee, L.C. (Eds.), Physics of Magnetic Flux Ropes, Geophysical Monograph 58, American Geophysical Union, Washington, 344.

    Google Scholar 

  • Hoeksema, J.T., 1989. Extending the sun's magnetic field through the three-dimensional heliosphere. Adv. Space Res. 9:4, 141–152.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J., 1972. Coronal expansion and solar wind. Springer-Verlag, New York.

    Book  Google Scholar 

  • Hundhausen, A.J., 1977. An interplanetary view of coronal holes. In: Zirker, J.B. (Ed.) Coronal Holes and High Speed Streams. Colorado Associated University Press, Boulder, 225.

    Google Scholar 

  • Hundhausen, A.J., 1988. The origin and propagation of coronal mass ejections. In: Pizzo, V.J., Holzer, T.E. and Sime, D.G. (Eds.) NCAR Technical Note 306 and Proc, Solar Wind Six, Boulder, 181.

    Google Scholar 

  • Kahler, S.W., Crooker, N.U. and Gosling, J.T., 1999a. A magnetic polarity and chirality analysis of ISEE 3 interplanetary magnetic clouds. J. Geophys. Res. 104, 9911–9918.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Crooker, N.U. and Gosling, J.T., 1999b. The polarities and locations of interplanetary coronal mass ejections in large interplanetary magnetic sectors. J. Geophys. Res. 104, 9919–9924.

    Article  ADS  Google Scholar 

  • Kessel, R.L., Chen, S.-H., Green, J.L., Fung, S.F., Boardsen, S.A., Tan, L.C., Eastman, T.E., Craven, J.D. and Frank, L.A., 1996. Evidence of high-latitude reconnecting during northward IMF: Hawkeye observations. Geophys. Res. Lett. 23, 583–586.

    Article  ADS  Google Scholar 

  • Leamon, R.J., Smith, C.W., Ness, N.F. and Wong, H.K., 1999. Dissipation range dynamics: Kinetic alfven waves and the importance of ße. J. Geophys. Res. 104, 22331–22344.

    Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Szabo, A., Ogilvie, K.W., Mish, W.H., Vassiliadis, D., Lazarus, A.J., Steinberg, J.T., Farrugia, C.J., Janoo, L. and Mariani, F., 1997. The Wind magnetic cloud and events of October 18-20, 1995: Interplanetary properties and as triggers for geomagnetic activity. J. Geophys. Res. 102, 14049–14063.

    Article  ADS  Google Scholar 

  • Levy, R.H., Petschek, H.E. and Siscoe, G.L., 1964. Aerodynamic aspects of magnetospheric flow. AIM J. 2, 2065–2076.

    Google Scholar 

  • Malandraki, O., Sarris, E.T., and Trochoutsos, P., 2000. Probing the magnetic topology of coronal mass ejections by means of Ulysses/HI-SCALE energetic particle observations. Ann Geophysicae 18, 129–140.

    Article  ADS  Google Scholar 

  • Mariani, M., Bavassano, B., Villante, U. and Ness, N.F., 1973. Variations in the occurrence rate of discontinuities in the interplanetary magnetic field. J. Geophys. Res. 78, 8011.

    Article  ADS  Google Scholar 

  • NASA Technical Memo TM-80758, 1980. Interplanetary Monitoring Platform Engineering History and Achievements. NASA-GSFC, Greenbelt, MD.

    Google Scholar 

  • Ness, N.F., 1969. The magnetic structure of interplanetary space. In: Bozoko, G., Gombosi, E., Sebestyen, A. and Somogyi, A. (Eds.), Proceedings of Budapest XI International Cosmic Ray Conference, 41–83.

    Google Scholar 

  • Ness, N.F., 1970. Magnetometers for space research. Space Science Reviews XI, 111–222.

    Google Scholar 

  • Ness, N.F., 2000. Spacecraft studies of the interplanetary magnetic field. J. Geophys. Res. 105 (accepted August, 2000).

    Google Scholar 

  • Ness, N.F., Scearce, CS. and Seek, J.B., 1964. Initial results of the IMP-1 magnetic field experiment. J. Geophys. Res. 69, 3531–3569.

    Article  ADS  Google Scholar 

  • Ness, N.F. and Wilcox, J.M., 1964. Solar origin of the interplanetary magnetic field. Phys. Rev. Letters 13, 461–464.

    Article  ADS  Google Scholar 

  • Ness, N.F. and Wilcox, J.M., 1965. Sector structure of the quiet interplanetary magnetic field. Science 148, 1592–1594.

    Article  ADS  Google Scholar 

  • Ness, N.F. and Wilcox, J.M., 1966. Extension of the photosphere field into interplanetary space. Astrophys. J. 143, 23–31.

    Article  ADS  Google Scholar 

  • Ness, N.F. and Wilcox, J.M., 1967. Interplanetary sector structure, 1962-1966. Solar Physics 2, 351–359.

    Article  ADS  Google Scholar 

  • Neugebauer, M. and Snyder, C.W., 1962. The mission of Mariner II: Preliminary results, solar plasma experiment. Science 138, 1095–1097.

    Article  ADS  Google Scholar 

  • Neupert, W.N. and Pizzo, V., 1974. Solar coronal holes as sources of recurrent geomagnetic disturbances. J. Geophys. Res. 79, 3701.

    Article  ADS  Google Scholar 

  • Parker, E.N., 1957. Sweet's mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520.

    Article  ADS  Google Scholar 

  • Parker, E.N., 1958. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–675.

    Article  ADS  Google Scholar 

  • Parker, E.N., 2000. The history of the early work on the heliospheric magnetic field. J. Geophys. Res. 105, in press.

    Google Scholar 

  • Paschmann, G. et al., 1979. Plasma acceleration at the Earth's magnetopause: Evidence for reconnection. Nature 282, 243–246.

    Article  ADS  Google Scholar 

  • Petschek, H.E., 1964. Magnetic field annihilation. In: Hess, W.N. (Ed.) AAS-NASA Symposium of the Physics of Solar Flares, NASA Spec. Publ. 15, 425–437.

    Google Scholar 

  • Petschek, Harry E., 1996. Glimpses of space physics in the 1960's and 1990's. J. Geophys. Res. 101, 10511–10519.

    Article  ADS  Google Scholar 

  • Phan, T.D., Kistler, L.M., Klecker, B., Haerendel, G., Paschmann, G., Sonnerup, B.U.Ö., Baumjohann, W., Bavassano-Cattaneo, M.B., Carlson, C.W., DiLellis, A.M., Fornacon, K.-H., Frank, L.A., Fujimoto, M., Georgescu, E., Kokubun, S., Moebius, E., Mukai, T., Øieroset, M, Paterson, W.R., Reme, H., 2000. Extended magnetic reconnection at the Earth's magnetopause from detection of bi-directional jets. Nature 404, 848–850.

    Article  ADS  Google Scholar 

  • Russell, C.T. and McPherron, R.L., 1973. Semiannual variation of geomagnetic activity. J. Geophys. Res. 78, 92–108.

    Article  ADS  Google Scholar 

  • Rust, D.M., 1997. Helicity conservation. In: Coronal Mass Ejections, Geophysical Monograph 99, American Geophysical Union, Washington, 119–125.

    Chapter  Google Scholar 

  • Rust, D.M., 1999. Magnetic helicity in solar filaments and coronal mass ejections. In: Magnetic Helicity in Space and Laboratory Plasmas, Geophysical Monograph 111, American Geophysical Union, Washington, 221–227.

    Chapter  Google Scholar 

  • Schatten, K.H., Ness, N.F. and Wilcox, J.M., 1968. Influence of a solar active region on the interplanetary magnetic field. Solar Physics 5, 240–256.

    Article  ADS  Google Scholar 

  • Schatten, K.H. and Wilcox, J.M., 1967. Response of the geomagnetic activity index Kp to the interplanetary magnetic field. J. Geophys. Res. 72, 5185–5191.

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M. and Ness, N.F., 1969. A model for the determination of interplanetary and coronal magnetic fields. Solar Physics 6, 442–455.

    Article  ADS  Google Scholar 

  • Schulz, M., 1973. Interplanetary sector structure and the heliomagnetic equator. Astrophys. Space Sci. 34, 371–383.

    Article  ADS  Google Scholar 

  • Schulz, M., 1995. Fourier parameters of heliospheric current sheet and their significance. Space Sci. Rev. 72, 149–152.

    Article  ADS  Google Scholar 

  • Scudder, J.D., Mozer, F.S., Maynard, N.C., Puhl-Quinn, P.A., Ma, Z.W. and Russell, CT., 2000. Fingerprints of collisionless reconnection I: evidence for hall MHD scales. J. Geophys. Res. (Submitted May, 2000).

    Google Scholar 

  • Siscoe, G.L., 1966. A unified treatment of magnetospheric dynamics. Planet. Space Sci. 14, 947–967.

    Article  ADS  Google Scholar 

  • Sitar, R.J. and Clauer, C.R., 1999. Ground magnetic response to sudden changes in the interplanetary magnetic field orientation. J. Geophys. Res. 104, 28343–28350.

    Article  ADS  Google Scholar 

  • Smith, C.W., Leamon, R.J., Ness, N.F., Burlaga, L.F., Tokar, R.L. and Skoug, R.M., 1999. Magnetic Fluctuation Properties of Interplanetary Magnetic Clouds, In: Kieda, D., Salamon, M., and Dingus, B. (Eds.) Proceedings of the 26th International Cosmic Ray Conference, Salt Lake City, 6, 452–455.

    Google Scholar 

  • Smith, E.J., Neugebauer, M., Balogh, A., Bame, S.J., Erdös, G., Forsyth, R.J., Goldstein, B.E., Phillips, J.L. and Tsurutani, B.T., 1993. Disappearance of the heliospheric sector structure at Ulysses. Geophys. Res. Lett. 20, 2327–2330.

    Article  ADS  Google Scholar 

  • Smith, E.J., Tsurutani, B.T. and Rosenberg, R.L., 1978. Observations of the interplanetary sector structure up to heliographic latitudes of 16 degrees: Pioneer 11. J. Geophys. Res. 83, 717.

    Article  ADS  Google Scholar 

  • Snyder, C.W., Neugebauer, M. and Rao, U.R., 1963. The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J. Geophys. Res. 68, 6361–6372.

    ADS  Google Scholar 

  • Song, P., DeZeeuw, D.L., Gombosi, T.I., Groth, C.P.T. and Powell, K.G., 1999. A numerical study of solar wind — magnetosphere interaction for northward interplanetary magnetic field. J. Geophys. Res. 104, 28361–28378.

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö, Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S.J., Asbridge, J.R., Gosling, J.T. and Russell, CT., 1981. Evidence for magnetic field reconnection at the Earth's magnetopause. J. Geophys. Res. 86,10049–10067.

    Article  ADS  Google Scholar 

  • Sperveslage, K., Neubauer, F.M., Baumgärtel, K. and Ness, N.F., 2000. Magnetic holes in the solar wind between 0.3 AU and 17 AU. Nonlinear Processes in Geophysics 7, 191–200.

    Article  ADS  Google Scholar 

  • Stamper, R., Lockwood, M., Wild, M.N. and Clark, T.D.G., 1999. Solar causes of the longterm increase in geomagnetic activity. J. Geophys. Res., 104, 28325–28342.

    Article  ADS  Google Scholar 

  • Suess, S.T., McComas, D.J. and Hoeksema, J.T., 1993. Prediction of the heliospheric current sheet tilt: 1992-1996. Geophys. Res. Lett. 20, 161–164.

    Article  ADS  Google Scholar 

  • Sweet, P.A., 1958. The neutral point theory of solar flares. In: Lehnert, B. (Ed.), Electromagnetic Phenomena in Cosmical Physics, IA U Symposium 6, Cambridge University Press, New York, 123–134.

    Google Scholar 

  • Tsinganos, K. MHD modeling of space weather drivers (this volume), 2001.

    Google Scholar 

  • Tsurutani, B.T. and Gonzalez, W.D., 1993. On the solar and interplanetary causes of geomagnetic storms. Phys. Fluids B 5(7), 2623.

    Article  ADS  Google Scholar 

  • Vasyliunas, V.M., 1975. Theoretical models of magnetic field line merging. Revs. Geophys. Space Sci. 13, 303–336.

    Article  ADS  Google Scholar 

  • Webb, D.F., 1995. Coronal mass ejections: the key to major interplanetary and geomagnetic disturbances. Reviews of Geophysics, Supplement, U.S. National Report to International Union of Geodesy and Geophysics 1991-1994, 577–583.

    Google Scholar 

  • Wilcox, J.M. and Ness, N.F., 1965. A quasi-stationary co-rotating structure in the interplanetary medium. J. Geophys. Res. 70, 793–5806.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ness, N.F. (2001). Interplanetary Magnetic Field Dynamics. In: Daglis, I.A. (eds) Space Storms and Space Weather Hazards. NATO Science Series, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0983-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0983-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0031-7

  • Online ISBN: 978-94-010-0983-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics