Skip to main content

Electronic Structure of Amorphous Insulators and Photo-Structural Effects in Chalcogenide Glasses

  • Chapter
Properties and Applications of Amorphous Materials

Part of the book series: NATO Science Series ((NAII,volume 9))

Abstract

It is an exciting time to undertake theoretical studies of amorphous and glassy insulators. This is because theory and its prime tool, simulation, are reaching a level of realism necessary to explain many experimental observations and even to go beyond them in providing microscopic pictures of processes in disordered materials. In this paper we discuss the modeling of electronic structure and how this work may be developed to give qualitative insight into the localized-extended (Anderson) transition [1], a computationally and perhaps fundamentally valuable restatement of the electronic structure problem in terms of real-space localized (Wannier-like [2]) states, the impact of thermal fluctuations on electron states and transport, and the atomic-dynamical consequences of light exposure for photo-sensitive glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  2. U. Stephan and D. A. Drabold, Phys. Rev. B 57 (1998) 6391; U. Stephan, R. M. Martin and D. A. Drabold, Extended range computation of Wannier functions in amorphous semiconductors, Phys. Rev. B (in press). These ideas have also been explored in: S. Goedecker and L. Colombo, Phys. Rev. Lett. 73, 122 (1994); O. F. Sankey, D. A. Drabold, and A. Gibson, Phys. Rev. B 50,1376 (1994).

    Article  ADS  Google Scholar 

  3. D. J. Thouless, Phys. Rept. 13 93 (1974).

    Article  ADS  Google Scholar 

  4. R. P. Feynman, Phys. Rev. 56 (1939) 340; H. Hellmann, Einfuhrung in die Quantumchemie (Franz Deutsche, Leipzig, 1937)

    Article  ADS  MATH  Google Scholar 

  5. B.R. Djordjevic et al, Phys. Rev. B, 52, 5685 (1995); F. Wooten and D. Weaire, Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic Press, New York, 1991), Vol. 40, p.2

    Article  ADS  Google Scholar 

  6. D. A. Drabold in Insulating and Semiconducting glasses, Edited by P. Boolchand, World Scientific, Singapore (2000).

    Google Scholar 

  7. G. T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996); N. Mousseau and G. T. Barkema, Phys. Rev. E 57, 2419 (1998), Comp. Sei. Eng. 1, No. 2, 74 (1999), N. Mousseau and G. T. Barkema, Phys. Rev. B 61,1898-1906 (2000).

    Google Scholar 

  8. See for example, R. M. Martin, Phys. Rev. B 14005 (1970).

    Google Scholar 

  9. For example, J. L. Yarger et al Polyamorphic transitions in network-forming liquids and glasses, ACS Symp. Series 676 214 (1997).

    Article  Google Scholar 

  10. G. Fabricius, E. Artacho, D. Sanchez-Portal, P. Ordejon, D. A. Drabold and J. M. Soler, Phys. Rev. B 60R16283 (1999).

    Google Scholar 

  11. L. J. Lewis and N. Mousseau, Comp. Mater. Sei. 12 210–241 (1998).

    Article  Google Scholar 

  12. M. Born and K. Huang, The dynamical theory of crystal lattices, Oxford, Clarendon (1954).

    Google Scholar 

  13. R. Car and M. Parrinello, Phys. Rev. Lett. 55 2471 (1985).

    Article  ADS  Google Scholar 

  14. D. Sanchez-Portal, P. Ordejön, E. Artacho and J. M. Soler, Int. J. of Quantum Chem. 65, 453 (1997).

    Article  Google Scholar 

  15. J. Lewis, A. Demkov, J. Ortega and O. F. Sankey (unpublished).

    Google Scholar 

  16. P. A. Fedders, D. A. Drabold, P. Ordejön, G. Fabricius, D. Sanchez-Portal, E. Artacho and J. M. Soler, Phys. Rev. B 60 10594 (1999).

    Article  ADS  Google Scholar 

  17. D. A. Drabold, P. A. Fedders and P. Stumm, Phys. Rev. B 49 16415 (1994).

    Article  ADS  Google Scholar 

  18. Jianjun Dong and D. A. Drabold, Phys. Rev. Lett. 80 (1998) 1928.

    Article  ADS  Google Scholar 

  19. C. Herring, Phys. Rev. 57 (1940) 1169.

    Article  ADS  Google Scholar 

  20. W. Harrison, Electronic Structure, Freeman, San Francisco, (1980).

    Google Scholar 

  21. G. H. Wannier, Phys. Rev. 32 191 (1937).

    Article  ADS  Google Scholar 

  22. See for example the seminal work of Kohn: W. Kohn, Phys. Rev. 133 A171 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Ordejön, D. A. Drabold, M. P. Grumbach, and R. M. Martin, Phys. Rev. B 48, 14 646 (1993); P. Ordejön, D. A. Drabold, R. M. Martin, and M. P. Grumbach, Phys. Rev. B 51, 1456 (1995); F. Mauri, G. Galli, and R. Car, Phys. Rev. B 47, 9973 (1993).

    Google Scholar 

  24. P. Ordejon, Comp. Mater. Sei. 12 157–191 (1998).

    Article  Google Scholar 

  25. S. Goedecker, Rev. Mod. Phys. 71 1085–1123 (1999).

    Article  ADS  Google Scholar 

  26. X.-P. Li, R. W. Nunes, and D. Vanderbilt, Phys. Rev. B 47, 10 891 (1993); R. W. Nunes and D. Vanderbilt, ibid. 50,17611 (1994).

    Article  Google Scholar 

  27. See for example, R. W. Nunes and D. Vanderbilt, Phys. Rev. Lett. 73 712 (1994).

    Article  ADS  Google Scholar 

  28. N. Mazari and D. Vanderbilt, Phys. Rev. B 56 12847 (1997).

    Article  ADS  Google Scholar 

  29. U. Stephan, D. A. Drabold and R. M. Martin, Phys. Rev. B 58 13472 (1998).

    Article  ADS  Google Scholar 

  30. Various aspects of this work have been reported in: U. Stephan, D. A. Drabold and R. M. Martin, Phys. Rev. B (in press), and D. A. Drabold. U. Stephan, J. Dong and S. Nakhmanson, J. Mol. Graphics and Modelling (in press). The latter includes color images relevant to many points discussed in this article.

    Google Scholar 

  31. Otto F Sankey, DJ. Niklewski, Phys. Rev. B40, 3979 (1989); Otto F. Sankey, D.A. Drabold and G.B. Adams, Bull. Am. Phys. Soc. 36, 924 (1991).

    ADS  Google Scholar 

  32. http://www.phy.ohiou.edu/~ drabold/cent.html

    Google Scholar 

  33. D. A. Drabold and P. A. Fedders, Phys. Rev. B 60 (1999) R721.

    Article  ADS  Google Scholar 

  34. S. Aljishi, J. D. Cohen, and L. Ley, Phys. Rev. Lett. 64 (1990) 2811.

    Article  ADS  Google Scholar 

  35. N. F. Mott and E. A. Davis, Electronic processes in non-crystalline materials, 2nd ed. (Clarendon, Oxford, 1979).

    Google Scholar 

  36. V. I. Arkhipov and G. J. Adriaenssens, J. Non-Cryst. Sol. 227 (1998) 166; Phys. Rev. B 54(1996)16696.

    Article  ADS  Google Scholar 

  37. D. A. Drabold, P. A. Fedders, S. Klemm and O. F. Sankey, Phys. Rev. Lett. 67 (1991) 2179.

    Article  ADS  Google Scholar 

  38. D. A. Drabold, J. Non.-Cryst. Sol. 266 211 (2000).

    Article  ADS  Google Scholar 

  39. M. Cobb and D. A. Drabold, Phys. Rev. B 56 (1997) 3054.

    Article  ADS  Google Scholar 

  40. X. Zhang and D. A. Drabold, Phys. Rev. Lett. 83 5042 (1999).

    Article  ADS  Google Scholar 

  41. P. Ordejon, D. A. Drabold and R. M. Martin, Phys. Rev. Lett. 75 1324 (1995).

    Google Scholar 

  42. For an mpeg format animation, see: http://www.phy.ohiou.edu/~drabold/fluctuate.html

    Google Scholar 

  43. E. Gibbon, The Decline and Fall of the Roman Empire, abridged edition by D. M. Low, (Harcourt Brace, New York, 1960).

    Google Scholar 

  44. See, for example P. Thomas and S. D. Baranovskii, J. Non-Cryst. Sol. 164, (1996) 431 and references therein.

    Article  Google Scholar 

  45. R. E. Allen, Phys. Rev. B 50 (1994) 18629.

    Article  ADS  Google Scholar 

  46. See for example, K. Thompson and T. J. Martinez, J. Chem. Phys. 110 (1999) 1376 and references therein.

    Article  ADS  Google Scholar 

  47. P. A. Fedders, Y. Fu and D. A. Drabold, Phys. Rev. Lett. 23 1888 (1992).

    Article  ADS  Google Scholar 

  48. P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Weiland and S. R. Elliott, Science 277 1799 (1997).

    Article  Google Scholar 

  49. H. Hisakuni and Ke. Tanaka, Science 270 974 (1995).

    Article  ADS  Google Scholar 

  50. J. Mort, Physics Today 47, 32 (1994).

    Article  Google Scholar 

  51. J. Rowlands and S. Kasap, Physics Today, 50, 24 (1997).

    Article  Google Scholar 

  52. P. W. Anderson, Phys. Rev. Lett. 34, 953 (1975).

    Article  ADS  Google Scholar 

  53. R.A. Street and N.F. Mott, Phys. Rev. Lett. 35, 1293 (1975).

    Article  ADS  Google Scholar 

  54. M. Kastner, D. Adler and H. Fritzsche, Phys. Rev. Lett. 37,1504 (1976).

    Article  ADS  Google Scholar 

  55. D. Vanderbilt and J.D. Joannopoulos, Phys. Rev. B22, 2927 (1980).

    ADS  Google Scholar 

  56. D. Hohl and R.O. Jones, Phys. Rev. B43 3856,1991.

    ADS  Google Scholar 

  57. R. Bellissent, Nucl. Instr. and Meth. 199, 289 (1982).

    Article  Google Scholar 

  58. W. A. Kamitakahara (private communication).

    Google Scholar 

  59. A.A. Demkov, J. Ortega, O.F. Sankey and M. Grumbach, Phys. Rev. 52, 1618 (1995).

    Article  ADS  Google Scholar 

  60. X. Zhang and D. A. Drabold, J. Non-Crystalline Solids 241, 195 (1998).

    Article  ADS  Google Scholar 

  61. F. Mauri and R. Car, Phys. Rev. Lett. 75 3166 (1995); J. Song et al, phys. Rev. B 53 8042 (1996); O. Pankratov and M. Scheffler, Phys. Rev. Lett. 71, 2797 (1993); For transport, G. Galli et al Phys. Rev. Lett. 42 7470 (1990).

    Article  ADS  Google Scholar 

  62. B. W. Corb, W. D. Wei and B. L. Averbach, J. Non-Crystalline Solids 53, 29 (1982).

    Article  ADS  Google Scholar 

  63. E.H. Henninger, R.C. Buschert and L. Heaton, J. Chem. Phys. 46, 586 (1967).

    Article  ADS  Google Scholar 

  64. R. Kaplow, T.A. Rowe and B.L. Averbach, Phys. Rev. 168, 1068 (1968).

    Article  ADS  Google Scholar 

  65. X. Zhang and D. A. Drabold, (unpublished).

    Google Scholar 

  66. We promoted either one or two electrons from the HOMO level; relaxations were similar. We report the two electron case here. The single electron promotion is probably best handled at LSDA level.

    Google Scholar 

  67. For example, B. Delley, “DMol, a Standard Tool for Density Functional Calculations: Review and Advances”. In J. M. Seminario and P. Politzer, eds., “Modern Density Functional Theory: A Tool for Chemistry”, vol. 2 of Theoretical and Computational Chemistry, Amsterdam, 1995. Elsevier Science Publ.

    Google Scholar 

  68. F. Kirchhoff, G. Kresse and M.J. Gillan, Phys. Rev. B 57, 10482 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Drabold, D.A., Nakhmanson, S., Zhang, X. (2001). Electronic Structure of Amorphous Insulators and Photo-Structural Effects in Chalcogenide Glasses. In: Thorpe, M.F., Tichý, L. (eds) Properties and Applications of Amorphous Materials. NATO Science Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0914-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0914-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6811-3

  • Online ISBN: 978-94-010-0914-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics