Skip to main content

The Complete Photonic Band Gap in Inverted Opals: How Can We Prove it Experimentally?

  • Chapter
Photonic Crystals and Light Localization in the 21st Century

Part of the book series: NATO Science Series ((ASIC,volume 563))

Abstract

Ever since a complete photonic band gap was predicted to exist in periodic structures,1,2 experimentalists have been trying to observe this effect at optical frequencies. Much of this effort has focused on fabricating three-dimensionally periodic structures (also called photonic crystals)3 that have the proper symmetry, lattice spacing, refractive index, etc. to obtain a complete band gap.4 Once the correct structure is made, one might imagine that the existence of the band gap will be simple to verify. Unfortunately, this is not necessarily the case. As was shown in the microwave regime, where the photonic band gap was first demonstrated,5,6 such measurements are far from trivial even in near-perfect millimeter-scale structures. Similar measurements in micron-scale optical photonic crystals should be even more challenging. For example, residual disorder will always be present in these structures and will complicate the analysis. Thus, it is useful to ask how one might experimentally verify a band gap in an optical photonic crystal. Here we discuss some aspects of this issue. In particular, we consider potential solutions for photonic crystals made by the so-called self-assembly methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn. Photonic Crystals, Princeton University Press, Princeton, (1995).

    MATH  Google Scholar 

  4. For a review see articles in this volume and in Photonic Band Gap Materials, Vol. 315 of NATO Advanced Study Institute, Ser. E, C. M. Soukoulis, ed., Kluwer, Dordrecht (1996).

    Google Scholar 

  5. E. Yablonovitch and T. J. Gmitter, Photonic band structure: The face-centered cubic case, Phys. Rev. Lett. 63, 1950 (1989).

    Article  ADS  Google Scholar 

  6. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Photonic band structure: The face-centered cubic case employing nonspherical atoms, Phys. Rev. Lett. 67, 2295 (1991).

    Article  ADS  Google Scholar 

  7. Y. Xia, B. Gates, Y. Yin, Y. Lu, Monodispersed colloidal spheres: Old materials with new applications, Adv. Mater. 12, 693 (2000).

    Article  Google Scholar 

  8. J. V. Sanders, Colour of precious opal, Nature 204, 1151 (1964).

    Article  ADS  Google Scholar 

  9. V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S.M. Samoilovich, and Yu. A. Vlasov, Optical spectroscopy of opal matrices with CdS embedded in its pores: quantum confinement and photonic band gap effects, II Nuovo Cimento, 17D, 1349 (1995).

    Article  ADS  Google Scholar 

  10. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V.G. Ralchenko, Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282, 897 (1998).

    Article  ADS  Google Scholar 

  11. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Porous silica via colloidal crystallization, Nature 389, 447 (1997).

    Article  ADS  Google Scholar 

  12. B. T. Holland, C. F. Blanford, and A. Stein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science 281, 538 (1998).

    Article  ADS  Google Scholar 

  13. J. E. G. J. Wijnhoven and W. L. Vos, Preparation of photonic crystals made of air spheres in titania, Science 281, 802 (1998).

    Article  ADS  Google Scholar 

  14. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, Optical photonic crystals fabricated from colloidal systems, Appl. Phys. Lett. 74, 3933 (1999).

    Article  ADS  Google Scholar 

  15. G. Subramanian, V. N. Manoharan, J. D. Thome, and D. J. Pine, Ordered macroporous materials by colloidal assembly: A possible route to photonic bandgap materials, Adv. Mater. 11, 1261 (1999).

    Article  Google Scholar 

  16. S. H. Park and Y. Xia, Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores, Adv. Mater. 10, 1045 (1998).

    Article  Google Scholar 

  17. P. Jiang, K. S. Hwang, D. M. Mittleman, J. F. Bertone, and V. L. Colvin, Template directed preparation of macroporous polymers with oriented and crystalline arrays of voids, J. Am. Chem. Soc. 121, 11630 (1999).

    Article  Google Scholar 

  18. M. Deutsch, Yu. A. Vlasov, and D. J. Norris, Conjugated-polymer photonic crystals. Adv. Mater. 12, 1176 (2000).

    Article  Google Scholar 

  19. O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, A class of porous metallic nanostructures, Nature 401, 548 (1999).

    Article  ADS  Google Scholar 

  20. K. M. Kulinowski, P. Jiang, H. Vaswani, V. L. Colvin, Porous metals from colloidal templates, Adv. Mater. 12, 833 (2000).

    Article  Google Scholar 

  21. J. E. G. J. Wijnhoven, S. J. M. Zevenhuizen, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, and W. L. Vos, Electrochemical assembly of ordered macropores in gold. Adv. Mater. 12, 888 (2000).

    Article  Google Scholar 

  22. N. Eradat, J. D. Huang, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, Fabrication and optical studies of metal-infiltrated opal photonic crystals and metallic replicas, published in this volume.

    Google Scholar 

  23. Yu. A. Vlasov, N. Yao, and D. J. Norris, Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots, Adv. Mater. 11, 165 (1999).

    Article  Google Scholar 

  24. P. V. Braun and P. Wiltzius, Electrochemically grown photonic crystals. Nature 402, 603 (1999).

    Article  ADS  Google Scholar 

  25. H. Míg uez, F. Meseguer, C. Lóp ez, M. Holgado, G. Andreasen, A. Mifsud, and V. Fornés, Germanium fec structure from a colloidal crystal template, Langmuir 16, 4405 (2000).

    Article  Google Scholar 

  26. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. López, F. Meseguer, H. Míguez, J. P. Mondia, G. A Ozin, O. Toader, and H. M. van Driel, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5um, Nature 405, 437 (2000).

    Article  ADS  Google Scholar 

  27. K. Busch and S. John, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E 58, 3896 (1998).

    Article  ADS  Google Scholar 

  28. V. N. Astratov, Yu. A. Vlasov, O. Z. Karimov, A. A. Kaplyanskii, Yu. G. Musikhin, N. A. Bert, V. N. Bogomolov, and A. V. Prokofiev, Photonic band gaps in 3D ordered fec silica matrices, Phys. Lett. A 222, 349 (1996).

    Article  ADS  Google Scholar 

  29. V. Yannopapas, N. Stefanou, and A. Modinos, Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals, J. Phys: Condens. Matter 9, 10261 (1997).

    Article  ADS  Google Scholar 

  30. K. W.-K. Shung and Y. C. Tsai, Surface effects and band measurements in photonic crystals, Phys. Rev. B 48, 11265 (1993).

    Article  ADS  Google Scholar 

  31. Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals, Phys. Rev. E 61, 5784 (2000).

    Article  ADS  Google Scholar 

  32. A. van Blaaderen, R. Ruel, and P. Wiltzius, Template-directed colloidal crystallization, Nature 385, 321 (1997).

    Article  ADS  Google Scholar 

  33. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Single-crystal colloidal multilayers of controlled thickness, Chem. Mater. 11, 2132 (1999).

    Article  Google Scholar 

  34. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, Two-dimensional crystallization, Nature 361, 26 (1993).

    Article  ADS  Google Scholar 

  35. Yu. A. Vlasov, M. Deutsch, and D. J. Norris, Single domain spectroscopy of self-assembled photonic crystals, Appl. Phys. Lett. 76, 1627 (2000).

    Article  ADS  Google Scholar 

  36. For example, see S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett. 77, 3873 (1996).

    Article  ADS  Google Scholar 

  37. Z.-Y. Li, Z.-Q. Zhang, Fragility of photonic band gaps in inverse-opal photonic crystals, Phys. Rev. B 62, 1516 (2000).

    Article  ADS  Google Scholar 

  38. N. Stefanou, V. Yannopapas, and A. Modinos, Heterostructures of photonic crystals: Frequency bands and transmission coefficients, Comp. Phys. Comm. 113, 49 (1998).

    Article  ADS  MATH  Google Scholar 

  39. E. P. Petrov, V. N. Bogomolov, I.I. Kalosha, and S. V. Gaponenko, Spontaneous emission of organic molecules embedded in a photonic crystal, Phys. Rev. Lett. 81, 77 (1998).

    Article  ADS  Google Scholar 

  40. K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, Appl. Phys. Lett. 73, 3506 (1998).

    Article  ADS  Google Scholar 

  41. M. Megens, J. E. G. J. Wijnhoven, A. Lagendijk, and W. L. Vos, Fluorescence lifetimes and linewidths of dye in photonic crystals. Phys. Rev. A 59, 4727 (1999); Light sources inside photonic crystals, J. Opt. Soc. Am. B 16, 1403 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Norris, D.J., Vlasov, Y.A. (2001). The Complete Photonic Band Gap in Inverted Opals: How Can We Prove it Experimentally?. In: Soukoulis, C.M. (eds) Photonic Crystals and Light Localization in the 21st Century. NATO Science Series, vol 563. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0738-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0738-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6948-6

  • Online ISBN: 978-94-010-0738-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics