Skip to main content

Volatile Inventory and Early Evolution of the Planetary Atmospheres

  • Chapter
Collisional Processes in the Solar System

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 261))

Abstract

Formation of atmospheres of the inner planets involved the concurrent processes of mantle degassing and collisions that culminated during the heavy bombardment. Volatile-rich icy planetesimals impacting on the planets as a late veneer strongly contributed to the volatile inventory. Icy remnants of the outer planet accretion significantly complemented the accumulation of the lithophile and atmophile elements forced out onto the surface of the inner planets from silicate basaltic magma enriched in volatiles. Orbital dynamics of small bodies, including near-Earth asteroids, comets, and bodies from the Edgeworth-Kuiper belt evolving to become inner planet crossers, is addressed to examine different plausible amounts of volatile accretion. The relative importance of comets and chondrites in the delivery of volatiles is constrained by the observed fractionation pattern of noble gas abundances in the atmospheres of inner planets. The following development of the early atmospheres depended on the amount of volatiles expelled from the interiors and deposited by impactors, while the position of the planet relative to the Sun and its mass affected its climatic evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, E., and Owen, T. (1977) Mars and Earth: Origin and abundance of volatiles,Science 198, 453–465.

    Article  ADS  Google Scholar 

  • Babadzhanov, P.B. (1987) Meteory i ikh nablyudenie(Meteors and observing them),Moscow: Nauka, in Russian.

    Google Scholar 

  • Bailey, M.E. and Emel’yanenko, V.V. (1996) Dynamical evolution of Halley-type comets,Mon. Not. R. Astron. Soc. 278, 1087–1110.

    Article  ADS  Google Scholar 

  • Bar-Nun, A., Herman, G., Laufer, D., and Rappaport, M.L., (1985) Icarus 63, 317–332.

    Article  ADS  Google Scholar 

  • Basilevsky, A.T., Head, J.W., Shaber G.G., and Strom R.G., (1997) The resurfacing history of Venus. in Venus II. Geology, Geophysics, Atmosphere and Solar Wind Enviroment, eds. S.W. Bougher, D.M. Hunten. and R.J. Phillips, The University of Arizona Press, Tucson, Arizona, pp. 1047–1084.

    Google Scholar 

  • Binzel, R.P., Barucci, M.A., and Fulchignoni, M. (1991) The origins of the asteroids, Sci.Am. 265, 66–72.

    Article  ADS  Google Scholar 

  • Britt, D.T., Tholen, D.J., Bell, J.F. and Pieters, C.M. (1992) Comparison of asteroid and meteorite spectra classification by principal component analysis, Icarus 99, 153–166.

    Article  ADS  Google Scholar 

  • Bottke, W.F., Jr., Nolan, M.C., Greenberg, R. and Kolvoord, R.A. (1994) Collisional lifetimes and impact statistics of near-Earth asteroids, in Hazards due to comets and asteroids, ed. T. Gehrels, The University of Arizona Press, Tucson & London, pp.337–357.

    Google Scholar 

  • Canavan, G.H. (1993) Value of space defenses, Proc. near-Earth object intercept workshop,eds. G.H. Canavan, J.C. Solem, and J.D.G. Rather, Los Alamos, pp. 261–274.

    Google Scholar 

  • Carr, M. (1998), Mars: aquifers, oceans and the prospects for life, Solar System Research32, 453–463.

    ADS  Google Scholar 

  • Cess, R.D., Ramanathan, V., and Owen, T. (1980) The Martian paleoclimate and enhanced atmospheric carbon dioxide, Icarus 41, 159–165.

    Article  ADS  Google Scholar 

  • Chyba, C.F., Owen, T.C. and Ip, W.-H. (1994) Impact delivery of volatiles and organic molecules to Earth, in Hazards due to comets and asteroids, ed. T. Gehrels, The University of Arizona Press, Tucson & London, pp. 9–58.

    Google Scholar 

  • Chyba, C.F., and Sagan, C. (1996) Comets as a source of prebiotic organic molecules for the early Earth, in Comets and Origin of Life, eds. P.J. Thomas, C.F. Chyba, and C.P. McKay, Springer-Verlag, pp. 147–173.

    Google Scholar 

  • De Bergh, C, Bezard, B., Crisp. D., Maillard, J.-R., Owen, T., Pollack, J.B., and Grin-spoon, D.H. (1991) Deuterium on Venus: Observations from Earth, Science 251, 547–549.

    Article  ADS  Google Scholar 

  • Donahue, T.M., Hoffman, J.H., Hodges, R.R., and Watson, A.J. (1982) Venus was wet: A measurement of the ratio of deuterium to hydrogen, Science 216, 630–635.

    Article  ADS  Google Scholar 

  • Dreibus, G, and Wänke, H. (1989) Supply and loss of volatile constituents during the accretion of terrestrial planets, in Origin and Evolution of Planetary and Satellite Atmospheres, eds. S.K. Atreya, J.B. Pollack, and M.S. Matthews, The University of Arizona Press, Tucson & London, pp. 268–288.

    Google Scholar 

  • Dvorak, R., Pilat-Lohinger, E. (1999) On the dynamical evolution of the Atens and the Apollos,Planet. Space Sci.47,665–677.

    Article  ADS  Google Scholar 

  • Duncan, M.J., Levison, H.F. and Budd, S.M. (1995) The dynamical structure of the Kuiper belt,Astron. J. 110,3073–3081.

    Article  ADS  Google Scholar 

  • Farinella, P., Gonczi, R., Froeschlé, Ch. and Froeschlé, C. (1993) The injection of asteroid fragments into resonances,Icarus 101, 174–187.

    Article  ADS  Google Scholar 

  • Farinella, P., Froeschlé, C., Gonczi, R. (1994) Meteorite delivery and transport, in Proc. of the IAU symposium No 160 “Asteroids, comets, meteors 1993” (June 14–18, 1993, Belgirate, Italy), eds. A. Milani, M. DiMartino and C. Cellino, pp. 205–222.

    Chapter  Google Scholar 

  • Fernández, J.A. (1980) On the existence of a comet belt beyond Neptune, Mon. Not. R. Astron. Soc. 192, 481–491.

    ADS  Google Scholar 

  • Fernández, J.A. (1990) Collision of comets with meteoroids, in Asteroids, Comets, Meteors III, eds. C.-I. Lagerkvist, H. Rickman, B.A. Lindblad, and M. Lindgren, Uppsala University, Uppsala, pp. 309–312.

    Google Scholar 

  • Gladman, B., Migliorini, F., Morbidelli, A., Zappalà, V., Michel, P., Cellino, A.,Froeschlé, Ch., Levison, H., Bailey, M., and Duncan, M. (1997) Dynamical lifetimes of objects injected in asteroid belt resonances, Science 277, 197–201.

    Article  ADS  Google Scholar 

  • Grieve, R.A.F. and Shoemaker, E.M. (1994) The record of past impacts on Earth, in Hazards due to comets and asteroids, ed. T. Gehrels, The University of Arizona Press, Tucson & London, pp. 417–462.

    Google Scholar 

  • Grinspoon, D.H. (1993) Implications of the high deuterium-to-hydrogen ratio for the sources of water in Venus’ atmosphere,Nature 363,428–431.

    Article  ADS  Google Scholar 

  • Grinspoon, D.H., and Lewis, J. (1989) Cometary water on Venus: Implications of stochastic impacts, Icarus 74, 21–35.

    Article  ADS  Google Scholar 

  • Hartmann, W.K. (1995) Planetary cratering 1. The question of multiple impactor populations: Lunar evidence, Meteoritics 30, 451–467.

    Article  ADS  Google Scholar 

  • Head, J.W. and Crumpler, L.S. (1987) Evidence for divergent planet-boundary characteristics and crustal spreading on Venus, Science 238, 1380–1385.

    Article  ADS  Google Scholar 

  • Hughes, D.W. and Harris, N.W. (1994) The distribution of asteroid sizes and its significance, Planet. Space Sci. 42. 291–295.

    Article  ADS  Google Scholar 

  • Ip, W.-H., and Fernández, J.A. (1988) Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion, Icarus 74, 47–61.

    Article  ADS  Google Scholar 

  • Ipatov, S.I. (1987) Accumulation and migration of the bodies from the zones of giant planets, Earth, Moon, and Planets 39, 101–128.

    Article  ADS  Google Scholar 

  • Ipatov S.I. (1991) Evolution of initially highly eccentric orbits of the growing nuclei of the giant planets, Sov. Astron. Letters 17, 113–119.

    ADS  Google Scholar 

  • Ipatov, S.I. (1993) Migration of bodies in the accretion of planets, Solar System Research 27, 65–79.

    ADS  Google Scholar 

  • Ipatov, S.I. (1995) Migration of small bodies to the Earth. Solar System Research 29, 261–286.

    ADS  Google Scholar 

  • Ipatov, S.I. (1998) Migration of Kuiper-belt objects inside the solar system, ”Planetary systems - the long view”, Proc. 9th Rencontres de Blois (June 22–28, 1997), eds. L.M. Celnikier and Tran Thanh Van, Editions Frontières, Gif sur Yvette, pp. 157–160.

    Google Scholar 

  • Ipatov, S.I. (1999) Migration of trans-Neptunian objects to the Earth, Celest. Mech.Dyn. Astron. 73, 107–116.

    Article  ADS  Google Scholar 

  • Ipatov, S.I. (2000) Migration of celestial bodies in the solar system, URSS Publishing Company, Moscow, in Russian, in press.

    Google Scholar 

  • Ipatov, S.I. and Hahn, G.J. (1999) Evolution of the orbits of the P/1996 R2 and P/1996 N2 objects, Solar System Research 33, 487–500.

    ADS  Google Scholar 

  • Jewitt, D. (1999) Kuiper belt objects, Annu. Rev. Earth. Planet. Sci. 27, 287–312.

    Article  ADS  Google Scholar 

  • Jewitt, D., Luu., J. and Chen, J. (1996) The Mauna Kea-Cerro-Tololo (MKCT) Kuiper belt and Centaur survey, Astron. J. 112, 1225–1238.

    Article  ADS  Google Scholar 

  • Levison, H.F. and Duncan, M.J. (1994) The long-term dynamical behavior of short-period comets, Icarus 108, 18–36.

    Article  ADS  Google Scholar 

  • Lewis, J.S., and Prinn, R.G. (1984) Planets and Their Atmospheres: Origin and Evolution. London: Academic Press.

    Google Scholar 

  • Luu, J., Marsden, B.G., Jewitt, D., Trujillo C.A., Hergenrother, C.W., Chen, J. and Offutt, W.B. (1997) A new dynamical class of objects in the outer Solar System,Nature 387, 573–575.

    Article  ADS  Google Scholar 

  • Malhotra, R. (1999) Chaotic planet formation, Nature 402, 599–600.

    Article  ADS  Google Scholar 

  • Marov, M.Ya. (1986) Planets of the Solar System, 2nd edition. Nauka, Moscow (in Russian).

    Google Scholar 

  • Marov, M.Ya. (1994) Physical Properties and Models of Comets, Solar System Research 28, 302–368.

    Google Scholar 

  • Marov, M.Ya., and Grinspoon, D. (1998) The Planet Venus. Yale University Press.

    Google Scholar 

  • Marsden, B.G. and Steel, D.I. (1994) Warning times and impact probabilities for long-period comets, in Hazards due to comets and asteroids, ed. T. Gehrels, The University of Arizona Press, Tucson & London, pp. 221–239.

    Google Scholar 

  • Melosh, J., and Vickery, A.M. (1989) Impact erosion of the primordial atmosphere of Mars, Nature 338, 487–489.

    Article  ADS  Google Scholar 

  • Morbidelli, A. (1999) Private communication.

    Google Scholar 

  • Nakamura, T. and Kurahashi, H. (1998) Collisional probability of periodic comets with the terrestrial planets: an invalid case of analytic formulation, Astron. J. 115, 848–854.

    Article  ADS  Google Scholar 

  • Newman, M.J., and Rood, R.T. (1977) Implications of solar evolution for the Earth’s early atmosphere, Science 198, 1035–1037.

    Article  ADS  Google Scholar 

  • Neukum, G. and Ivanov, B.A. (1994) The record of past impacts on Earth, in Hazards due to comets and asteroids, ed. T. Gehrels, The University of Arizona Press, Tucson & London, pp. 359–416.

    Google Scholar 

  • Öpik, E.J. (1963) Small bodies in the Solar System 1: Survival of cometary nuclei and the asteroids, Adv. Astron. Astrophys. 2, 219–262.

    Google Scholar 

  • Owen, T., and Bar-Nun, A. (1996) Comets, meteorites and atmospheres, Earth, Moon,and Planets 72, 425–432.

    Article  ADS  Google Scholar 

  • Petit, J.-M. (1993) Modelling the outcomes of high-velocity impacts between small solar system bodies, Celest. Mech. Dyn. Astron. 57, 1–28.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Pollack, J.B., and Black, D.C. (1979) Implications of the gas compositional measurements of Pioneer Venus for the origin of planetary atmospheres, Science 205, 56–59.

    Article  ADS  Google Scholar 

  • Rabinowitz, D., Bowell, E., Shoemaker, E., and Muinonen, K. (1994) The population of Earth-crossing asteroids, in Hazards due to comets and asteroids, ed. T. Gehrels, The University of Arizona Press, Tucson & London, pp. 285–312.

    Google Scholar 

  • Safronov, V.S. (1969) Evolution of the protoplanetary cloud and formation of the Earth and planets, Moscow: Nauka. Transl. Israel Program for Scientific Translation, 1972,NASA TTF-677.

    Google Scholar 

  • Sagan, C, and Mullen, G. (1972) Earth and Mars: Evolution of atmospheres and surface temperature, Science 177, 52–56.

    Article  ADS  Google Scholar 

  • Shoemaker, E.M., Wolfe, R.F. and Shoemaker, C.S. (1990) Asteroid and comet flux in the neighborhood of Earth, in Global Catastrophes in Earth History, eds. V.L. Sharpton and P.D. Ward, Geological Soc. of America, Special Paper 247 (Boulder: geological Soc. of America), pp. 155–170.

    Google Scholar 

  • Shoemaker, E.M., Weissman, P.R. and Shoemaker, C.S. (1994) The flux of periodic comets near Earth, in Hazards due to comets and asteroids, ed. T. Gehrels, The University of Arizona Press, Tucson & London, pp. 313–335.

    Google Scholar 

  • Thommes, E.W., Duncan, M.J., Levison, H.F. (1999) The formation of Uranus and Neptune in the Jupiter-Saturn region of the solar system, Nature 402, 635–638.

    Article  ADS  Google Scholar 

  • Trujillo, C.A., Jewitt, D.C., and Luu, J.X. (2000) Population of the scattered Kuiper belt, Astrophys. J. 529, L103–L106.

    Article  ADS  Google Scholar 

  • Turekian, K.K., and Clark, S.P., Jr. (1975) The non-homogeneous accumulation model for terrestrial planet formation and the consequence for the atmosphere of Venus, J.Atmos. Sci 32, 1257–1261.

    Article  ADS  Google Scholar 

  • Vilas, F., Zolensky, M.E. (1999) Water, water everywhere: The aqueous alteration history recorded in meteorites, Meteorite!5, N 1, 8–10.

    Google Scholar 

  • Weissman, P.R. (1994) The comet and asteroid impact hazard in perspective, inHazards due to comets and asteroids, ed. T. Gehrels, The University of Arizona Press, Tucson & London, pp. 1191–1212.

    Google Scholar 

  • Weissman, P.R. (1995) The Kuiper belt, Annu. Rev. Astron. Astrophys. 33, 327–357.

    Article  ADS  Google Scholar 

  • Weissman, P.R., A’Hearn, M.F., McFadden, L.A. and Rickman, H. (1989) Evolution of comets into asteroids, in Asteroids II, eds. R.P. Binzel, T. Gehrels and M.S. Matthews,Tucson: Univ. Arizona Press, pp. 880–919.

    Google Scholar 

  • Wetherill, G.W. (1988) Where do the Apollo objects come from?, Icarus 76, 1–18.

    Article  ADS  Google Scholar 

  • Wetherill, G.W. (1989) Cratering of the terrestrial planets by Apollo objects, Meteoritics 24, 15–22.

    Article  ADS  Google Scholar 

  • Wetherill, G.W. (1991) End products of cometary evolution: cometary origin of Earth-crossing bodies of asteroidal appearance,Proc. of the IAU Colloquium 121“Comets in the post-Halley era”, eds. R.L. Newburn, J. Rahe and M. Neugebauer, Amsterdam:Kluwer Acad. Publ., pp. 537–556.

    Chapter  Google Scholar 

  • Whipple (1983) 1983 TB and the Geminid meteors, IAU Circ, No. 3881 107.

    ADS  Google Scholar 

  • Williams, D.P. and Wetherill, G.W. (1994) Size distribution of collisionally evolved asteroidal populations: Analytical solution for self-similar collision cascades, Icarus 107,117–128.

    Article  ADS  Google Scholar 

  • Zharkov, V.N. and Kozenko, A.V (1990) The role of Jupiter in the formation of the giant planets, Sov. Astron. Lett. 16, no 2, (pp. 169–173 in Russian edition).

    Google Scholar 

  • Zolensky, M.E., Bodnar, R.J., Gibson, E.K. Jr., Nyquist, L.E., Reese, Y., Shih, Chi-Yu,Wiesmann, H. (1999) Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998), Science 285, 1377–1379.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marov, M.Y., Ipatov, S.I. (2001). Volatile Inventory and Early Evolution of the Planetary Atmospheres. In: Marov, M.Y., Rickman, H. (eds) Collisional Processes in the Solar System. Astrophysics and Space Science Library, vol 261. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0712-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0712-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3832-4

  • Online ISBN: 978-94-010-0712-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics