Skip to main content

Utility and relevance of aquatic oligochaetes in Ecological Risk Assessment

  • Conference paper
Aquatic Oligochaete Biology VIII

Part of the book series: Developments in Hydrobiology ((DIHY,volume 158))

Abstract

Ecological risk assessment (EcoRA) provides both a process and a framework to evaluate the potential for adverse ecological effects occurring as a result of exposure to contaminants or other stressors. EcoRA begins with problem formulation/hazard identification, progresses to effects and exposure assessment, and culminates with risk characterization (an estimate of the incidence and severity of any adverse effects likely to occur). Key components of EcoRA include determining: stressors/contaminants of concern; sensitive, exposed biota; and, appropriate tests and organisms for evaluating effects. Aquatic oligochaetes are not generally used directly in EcoRA because of three major perceptions. First, EcoRA personnel are generally not familiar with or comfortable using this group of organisms. Second, there is believed to be a paucity of widely accepted toxicity tests with these organisms. Third, their taxonomy is considered difficult and uncertain. In fact, aquatic oligochaetes potentially have great utility and relevance to EcoRAs because of factors including: their importance in the aquatic food chain (e.g. prey to fauna including fish and waterfowl; as a vector for contaminant movement through the food chain from bacteria); many species are widely distributed and well studied; representatives include fresh, estuarine and marine species; as a group, they range from sensitive to insensitive over a wide range of environmental insults; they have a long history of use in pollution monitoring and assessment; and, relevant toxicity and biaccumulation tests exist. Toxicity testing under defined conditions is appropriate for problem formulation while more realistic testing for effects assessment (e.g. microcosms) is logistically easier with this group of organisms than with others due to their relatively small size. The importance of aquatic oligochaetes for EcoRA, in particular of sediments, is particularly compelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarefjord, F., R. Borgstrom, L. Lien & G. Milbrink, 1973. Oligo-chaetes in the bottom fauna and stomach contents of trout, Salmo trutta (L.). Norw. J. Zool. 21: 281–288.

    Google Scholar 

  • Achazi, R. K., G. Chrozcz, C. Düker, M. Henneken, B. Rothe, K. Schaub & I. Steudel, 1995. The effect of fluoranthene (Fla), benzo(a)pyrene (BAP) and cadmium (Cd) upon survival rate and life cycle parameters of two terrestrial annelids in laboratory test systems. Newslett. Enchytraeidae 4: 7–14.

    Google Scholar 

  • Adler, D., M. Amdurer & P. H. Santschi, 1980. Metal tracers in two marine microcosms: sensitivity to scale and configuration. In Giesy, J. R (ed.), Microcosms in Ecological Research. Conf-78-1101. U.S. Dept. of Energy, Washington, D.C.

    Google Scholar 

  • Amon, H. U., 1985. Worm toxicity tests using Tubifex tubifex. FAO Workshop, Versailles. Colloq. INRA 31: 303–317.

    Google Scholar 

  • Ankley, G. T., G. L. Phipps, E. N. Leonard, D. A. Benoit, V. R. Matt-son, P. A. Kosian, A. M. Cotter, J. R. Dierkes, D. J. Hansen & J. D. Mahony, 1991a. Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environ. Toxicol. Chem. 10: 1299–1307.

    Article  CAS  Google Scholar 

  • Ankley, G. T., M. K. Schubauer-Berigan & J. R. Dierkes, 1991b. Predicting the toxicity of bulk sediments to aquatic organisms using aqueous test fractions: pore water versus elutriate. Environ. Toxicol. Chem. 10: 1359–1366.

    Article  CAS  Google Scholar 

  • Ankley, G. T., P. M. Cook, A. R. Carlson, D. J. Call, J. A. Swen-son, H. F. Corcoran & R. A. Hoke, 1992. Bioaccumulation of PCBs from sediment by oligochaetes and fishes: comparison of laboratory and field studies. Can. J. Fish, aquat. Sci. 49: 2080–2085.

    Article  CAS  Google Scholar 

  • Ankley, G. T., D. A. Benoit, R. A. Hoke, E. N. Leonard, C. W. West, G. L. Phipps, V. R. Mattson & L. A. Anderson, 1993. Development and evaluation of test methods for benthic invertebrates and sediments: effects of flow rate and feeding on water quality and exposure concentrations. Arch, envir. Toxicol. Chem. 25: 12–19.

    CAS  Google Scholar 

  • Ankley, G. T., E. N. Leonard & V. R. Mattson, 1994a. Prediction of bioaccumulation of metals from contaminated sediments by the oligochaete, Lumbriculus variegatus. Wat. Res. 28: 1071–1076.

    Article  CAS  Google Scholar 

  • Ankley, G. T., D. A. Benoit, J. C. Balogh, T. B. Reynoldson, K. E. Day & R. A. Hoke, 1994b. Evaluation of potential confounding factors in sediment toxicity tests with three freshwater benthic invertebrates. Environ. Toxicol. Chem. 13: 627–635.

    Article  CAS  Google Scholar 

  • Arntz, W. E., 1978. Predation on benthos by flounder Platichthus fleus L. in the deeper parts of Keel Bay. Meeresforsching 26: 70–78.

    Google Scholar 

  • ASTM, 1996. Standard test methods for measuring the toxicity of sediment-associated contaminants to fresh water invertebrates. ASTM Method E1706-95b. 1996 Annual Book of ASTM Standards, Volume 11.05. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • Back, H., 1990. Edipermal uptake of Pb, Cd, and Zn in tubificid worms. Oecologia 85: 226–232.

    Article  Google Scholar 

  • Bailey, H. C. & D. H. W. Liu, 1980. Lumbriculus variegatus, a benthic oligochaete, as a bioassay organism. In Eaton, J. C., P. R. Parrish & A. C. Hendricks (eds), Aquatic Toxicology. ASTM STP 707, American Society for Testing and Materials, Philadelphia: 205–215.

    Google Scholar 

  • Bailey, R. C, K. E. Day, R. H. Norris & T. B. Reynoldson, 1995. Macroinvertebrate community structure and sediment bioassay results from nearshore areas of North American Great Lakes. J. Great Lakes Res. 21: 42–52.

    Article  Google Scholar 

  • Barber, W. E. & N. R. Kevern, 1974. Seasonal variation of sieving efficiency in a lotie lake. Freshwat. Biol. 4: 293–300.

    Article  Google Scholar 

  • Bauer-Hilty, A., R. Dallinger & B. Berger, 1989. Isolation and partial characterization of a cadmium-binding protein from Lumbriculus variegatus (Oligochaeta, Annelida). Comp. Bio-chem. Physiol. 94C: 373–379.

    CAS  Google Scholar 

  • Bervoets, L., R. Blust, M. de Wit & R. Verheyen, 1997. Relationships between river sediment characteristics and trace metal concentrations in tubificid worms and chironomid larvae. Envir. Pollut. 95: 345–356.

    Article  CAS  Google Scholar 

  • Besser, J. M., J. P. Giesy, J. A. Kubitz, D. A. Verbrugge, T. G. Coon & W. E. Braselton, 1996. Assessment of sediment quality in dredged and undredged areas of the Trenton Channel of the Detroit River, Michigan, U.S.A., using the Sediment Quality Triad. J. Great Lakes Res. 22: 683–696.

    Article  CAS  Google Scholar 

  • Bhunia, F., N. C. Saha & A. Kaviraj, 2000. Toxicity of thiocy-anate to fish, plankton, worm and aquatic ecosystem. Bull, envir. Contam. Toxicol. 64: 197–204.

    Article  CAS  Google Scholar 

  • Birtwell, I. K. & D. R. Arthur, 1980. The ecology of tubificids in the Thames estuary with particular reference to T. costatus (Claparède). In Brinkhurst, R. O. & D. G. Cook (eds), Aquatic Oligochaete Biology. Plenum Press, New York: 175–184.

    Google Scholar 

  • Booth, L. H., S. Hodge & K. O’Halloran, 2000. Use of Cholinesterase in Apporrectodea caliginosa (Oligochaeta: Lumbri-cidae) to detect organophosphate contamination: comparison of laboratory tests, mesocosms, and field studies. Environ. Toxicol. Chem. 19: 417–422.

    CAS  Google Scholar 

  • Bowker, D. W., M. T. Wareham & M. A. Learner, 1985. A choice chamber experiment on the selection of algae as food and substrate by Nais elinguis (O1igochaeta:Naididae). Freshwat. Biol. 15: 547–557.

    Article  Google Scholar 

  • Bremle, G. & G. Ewald, 1995. Bioconcentration of polychlorinated biphenyls (PCBs) in chironomid larvae, oligochaete worms and fish from contaminated lake sediment. Mar. Feshwat. Res. 46: 267–273.

    CAS  Google Scholar 

  • Brinkhurst, R. O. & B. G. M. Jamieson, 1971. Aquatic Oligochaeta of the World. Oliver & Boyd, Edinburgh: 860 pp.

    Google Scholar 

  • Brinkhurst, R. O., K. E. Chua & N. Kaushik, 1972. Interspecific interactions and selective feeding by tubificid oligochaetes. Limnol. Oceanogr. 17: 122–133.

    Article  Google Scholar 

  • Brinkhurst, R. O., R M. Chapman & M. A. Farrell 1983. A comparative study of respiration rates of some aquatic oligochaetes in relation to sublethal stress. Int. Rev. ges. Hydrobiol. 68: 683–699.

    Article  CAS  Google Scholar 

  • Brokovic-Popovic, I. & M. Popovic, 1977a. Effects of heavy metals on survival and respiration of tubificid worms: Part I — Effects on survival. Envir. Pollut. 13: 65–72.

    Article  Google Scholar 

  • Brokovic-Popovic, I. & M. Popovic, 1977b. Effects of heavy metals on survival and respiration of tubificid worms: Part I — Effects on respiration rate. Envir. Pollut. 13: 93–98.

    Article  Google Scholar 

  • Brunson, E. L., T. J. Canfield, C. J. Ingersoll & N. E. Kemble, 1998. Assessing the bioaccumulation of contaminants from sediments of the Upper Mississippi River using field-collected oligochaetes and laboratory-exposed Lumbriculus variegatus. Arch. Envir. Contam. Toxicol. 35: 191–201.

    Article  CAS  Google Scholar 

  • Buddington, R. K. & S. I. Doroshov, 1984. Feeding trials with hatchery produced white sturgeon (Acipenser transmontanus). Aquaculture 36: 237–243.

    Article  Google Scholar 

  • Burton, G. A. Jr., C. G. Ingersoll, L. C. Burnett, M. Henry, M. L. Hinman, S. J. Klaine, P. F. Landrum, P. Ross & M. Tuchman, 1996. A comparison of sediment toxicity methods at three Great Lake Areas of Concern. J. Great Lakes Res. 22: 495–511.

    Article  CAS  Google Scholar 

  • Canfield, T. J., N. E. Kemble, W. G. Brumbaugh, T. J. Dwyer, C. G. Ingersoll & J. F. Fairchild, 1994. Use of invertebrate community structure and the Sediment Quality Triad to evaluate metal-contaminated sediment in the Upper Clark Fork River, Montana. Environ. Toxicol. Chem. 13: 1999–2012.

    Article  CAS  Google Scholar 

  • Canfield, T. J., F. J. Dwyer, J. F. Fairchild, P. S. Haverland, C. G. Ingersoll, N. E. Kemble, D. R. Mount, T. W. La Point, G. A. Burton & M. C. Swift, 1996. Assessing contamination in Great Lakes sediments using benthic invertebrate communities and the Sediment Quality Triad approach. J. Great Lakes Res. 22: 565–583.

    Article  CAS  Google Scholar 

  • Canfield, T. J., E. L. Brunson, F. J. Dwyer, C. G. Ingersoll & N. E. Kemble, 1998. Assessing sediments from Upper Mississippi River navigational pools using a benthic invertebrate community evaluation and the Sediment Quality Triad approach. Arch. Envir. Contam. Toxicol. 35: 202–212.

    Article  CAS  Google Scholar 

  • Carlson, A. R., G. L. Phipps, V. R. Mattson, P. A. Kosian & A. M. Cotter, 1991. The role of acid-volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sediments. Environ. Toxicol. Chem. 14: 1309–1319.

    Article  Google Scholar 

  • Casellato, S. & P. A. Negrisolo, 1989. Acute and chronic effects of an anionic surfactant on some freshwater tubificid species. Hydrobiologia 180: 243–252.

    Article  CAS  Google Scholar 

  • Casellato, S., R. Aiello, P. A. Negrisolo & M. Seno, 1992. Long-term experiment on Branchiura sowerbyi Beddard (Oligochaeta, Tubificidae) using sediment treated with LAS (Linear Alkylbenzene Sulphonate). Hydrobiologia 232: 169–173.

    Article  CAS  Google Scholar 

  • Chapman, P. M., 1987. Oligochaete respiration as a measure of sediment toxicity in Puget Sound, Washington. Hydrobiologia 155: 249–258.

    Article  CAS  Google Scholar 

  • Chapman, P. M. & R. O. Brinkhurst, 1981. Seasonal changes in interstitial salinities and seasonal movements of subtidal benthic invertebrates in the Fraser River, B.C. Estuar. coast, mar. Sci. 12: 49–66.

    Google Scholar 

  • Chapman, P. M. & R. O. Brinkhurst, 1984. Lethal and sublethal tolerances of aquatic oligochaetes with reference to their use as abiotic index of pollution. Hydrobiologia 115: 139–144.

    Article  CAS  Google Scholar 

  • Chapman, P. M. & D. G. Mitchell, 1986. Acute tolerance tests with the oligochaete Nais communis (Naididae) and Ilyodrilus frantzi (Tubificidae). Hydrobiologia 155: 61–64.

    Article  Google Scholar 

  • Chapman, P. M. & F. Wang, 2001. Assessing sediment contamination in estuaries. Environ. Toxicol. Chem. 20: 3–22.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, P. M., L. M. Churchland, P. Thompson & E. Mich-nowsky, 1980. Heavy metal studies with oligochaetes. In Brinkhurst, R. O. & D. G. Cook (eds), Aquatic Oligochaete Biology. Plenum Press, New York: 477–502.

    Chapter  Google Scholar 

  • Chapman, P. M., M. A. Farrell & R. O. Brinkhurst, 1982a. Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental factors. Aquat. Toxicol. 2: 47–67.

    Article  CAS  Google Scholar 

  • Chapman, P. M., M. A. Farrell & R. O. Brinkhurst, 1982b. Relative tolerances of selected aquatic oligochaetes to combinations of pollutants and environmental factors. Aquat. Toxicol. 2: 69–78.

    Article  CAS  Google Scholar 

  • Chapman, P. M., M. A. Farrell & R. O. Brinkhurst, 1982c. Effects of species interactions on the survival and respiration of Limnodrilus hojfmeisteri and Tubifex tubifex (Oligo-chaeta:Tubificidae) exposed to various pollutants and environmental factors. Wat. Res. 16: 1405–1408.

    Article  CAS  Google Scholar 

  • Chapman, P. M., R. N. Dexter & E. R. Long, 1987. Synoptic measures of sediment contamination, toxicity and infaunal community composition (the Sediment Quality Triad) in San Francisco Bay. Mar. Ecol. Prog. Ser. 37: 75–96.

    Article  CAS  Google Scholar 

  • Chapman, K. K., M. J. Benton, R. O. Brinkhurst & P. R. Sch-euerman, 1999. Use of the aquatic oligochaetes Lumbriculus variegatus and Tubifex tubifex for assessing the toxicity of copper and cadmium in a spiked-artificial-sediment toxicity test. Environ. Toxicol. 14: 271–278.

    Article  CAS  Google Scholar 

  • Chua, K. E. & R. O. Brinkhurst, 1973. Evidence of interspecific interactions in the respiration of tubificid oligochaetes. J. Fish. Res. Bd Can. 30:617–622.

    Article  Google Scholar 

  • Ciarelli, S., B. J. Kater & N. M. Van Straalen, 2000. Influence of bioturbation by the amphipod Corophium volutator on fluor-anthene uptake in the marine polychaete Nereis virens. Environ. Toxicol. Chem. 19: 1575–1581.

    CAS  Google Scholar 

  • Coler, R. A., M. S. Coler & P. T. Kostecki, 1988. Tubificid behavior as a stress indicator. Wat. Res. 22: 263–267.

    Article  CAS  Google Scholar 

  • Connell, D. W., M. Bowman & D. W. Hawker, 1988. Bioconcentration of chlorinated hydrocarbons from sediment by oligochaetes. Ecotox. Environ. Safe. 16: 293–302.

    Article  CAS  Google Scholar 

  • Cross, W. H., 1976. A study of prédation rates of leeches on tubificid worms under laboratory conditions. Ohio J. Sci. 76: 164–166.

    Google Scholar 

  • D’Angelo, A. M. & G. Sinorile, 1974. Investigations on mercury localization in a freshwater oligochaete (Tubifex tubifex). Igiene. Mod. 66: 286–294.

    Google Scholar 

  • Dabrowska, H., S. W. Fisher, K. Dabrowski & A. E. Staubus, 1996. Dietary uptake efficiency of HCBP in channel catfish: the effect of fish contaminant body burden. Environ. Toxicol. Chem. 15: 746–749.

    CAS  Google Scholar 

  • Day, K. E., R. S. Kirby & T. B. Reynoldson, 1995a. The effect of manipulations of freshwater sediments on responses of benthic invertebrates in whole-sediment toxicity tests. Environ. Toxicol. Chem. 14: 1333–1343.

    Article  CAS  Google Scholar 

  • Day, K. E., B. J. Dutka, K. K. Kwan, N. Batista, T. B. Reynoldson & J. L. Metcalfe-Smith, 1995b. Correlations between solid-phase microbial screening assays, whole-sediment toxicity tests with macroinvertebrates, and in situ benthic community structure. J. Great Lakes Res. 21: 192–206.

    Article  CAS  Google Scholar 

  • Dean, J. M., 1974. The accumulation of 65Zn and other radionuclides by tubificid worms. Hydrobiologia 45: 33–38.

    Article  CAS  Google Scholar 

  • Dermott, R. & M. Munawar, 1992. A simple and sensitive assay for evaluation of sediment toxicity using Lumbriculus variegatus. Hydrobiologia 235/236: 407–414.

    Article  Google Scholar 

  • Diamond, M. L., D. Mackay, R. J. Cornett & L. A. Chant, 1990. A model of the exchange of inorganic chemicals between water and sediments. Environ. Sci. Technol. 24: 713–722.

    Article  CAS  Google Scholar 

  • Diaz, R. J., 1980. Ecology of tidal freshwater and estuarine Tu-bificidae (Oligochaeta). In Brinkhurst, R. O. & D. G. Cook (eds), Aquatic Oligochaete Biology. Plenum Press, New York: 319–330.

    Chapter  Google Scholar 

  • Diaz, R. J., 1989. Pollution and tidal benthic communities of the James River estuary, Virginia. Hydrobiologia 180: 195–211.

    Article  CAS  Google Scholar 

  • Drewes, C. D., 1997. Sublethal effects of environmental toxicants on oligochaete escape reflexes. Am. Zool. 37: 346–353.

    CAS  Google Scholar 

  • Dubilier, N., O. Giere & M. Grieshaber, 1994. Concomitant effects of sulfide and hypoxia on the aerobic metabolism of the marine oligochaete Tubificoides benedii to sulfidic sediments. J. exp. Zool. 269: 287–297.

    Article  CAS  Google Scholar 

  • Dubilier, N., O. Giere & M. Grieshaber, 1995. Morphological and ecophysiological adaptations of the marine oligochaete Tubificoides benedii to sulfidic sediments. Am. Zool. 35: 163–173.

    CAS  Google Scholar 

  • Dubilier, N., R. Windoffer, M. Grieshaber & O. Giere, 1997. Ultrastructure and anaerobic metabolism of mitochondria in the marine oligochaete Tubificoides benedii’. effects of hypoxia and sulfide. Mar. Biol. 127: 637–645.

    Article  CAS  Google Scholar 

  • Eaton, A. D., L. C. Clesceri & A. E. Greenberg, 1995. Standard Methods for the Examination of Water and Wastewater. 19th edn. American Public Health Association, Washington, DC: 1346 pp.

    Google Scholar 

  • ECETOC, 1997. The value of aquatic model ecosystem studies in ecotoxicology. European Center for Ecotoxicology and Toxicology of Chemicals, Technical Report 73, Brussels: 112 pp.

    Google Scholar 

  • Egeler, Ph., J. Römbke, M. Melier, T. Knacker, C. Franke, G. Studinger & R. Nagel, 1997. Bioaccumulation of lindane and hexachlorobenzene by tubificid sludgeworms (Oligochaeta) under standardised laboratory conditions. Chemosphere 35: 835–852.

    Article  CAS  Google Scholar 

  • Egeler, Ph., M. Melier, J. Roembke, P Spoerlein, B. Streit & R. Nagel, 2000. Biomagnification of hexachlorobenzene and terbutryn in Stickleback (Gasterosteus aculeatus) from spiked sediment and contaminated invertebrates. Third Society of Environmental Toxicology & Chemistry (SETAC) World Congress, Brighton, U.K., May 21-25, 2000. Abstract Book: 156 pp.

    Google Scholar 

  • Ewell, W. S., J. W. Gorsuch, R. O. Kringle, K. A. Robillard & R. C. Spiegel, 1986. Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environ. Toxicol. Chem. 5: 831–840.

    Article  CAS  Google Scholar 

  • Fargasová, A., 1994. Toxicity of metals on Daphnia magna and Tubifex tubifex. Ecotox. Environ. Safe. 27: 210–213.

    Article  Google Scholar 

  • Fischer, E. & I. Horvàth, 1977. Cytochemical studies on the cuticle and epidermis of Tubifex tubifex Müll, with special regard to the localization of polysaccharides, heavy metals and DAB-reactivity. Histochemistry 54: 259–271.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S. W., S. W. Chordas III & P. F. Landrum, 1999. Lethal and sublethal body residues for PCB intoxication in the oligochaete, Lumbriculus variegatus. Aquat. Toxicol. 45: 115–126.

    Article  CAS  Google Scholar 

  • Giere, O., J.-H. Preusse & N. Dubilier, 1999. Tubificoides benedii (Tubificidae, Oligochaeta) – a pioneer in hypoxic and sulfidic environments. An overview of adaptive pathways. Hydrobiologia 406: 235–241.

    Article  Google Scholar 

  • Giesy, J. P. & R. A. Hoke, 1989. Freshwater sediment toxicity bioassessment: Rationale for species selection and test design. J. Great Lakes Res. 15: 539–569.

    Article  CAS  Google Scholar 

  • Gunn, A. M., D. T. E. Hunt & D. A. Winnard, 1989. The effect of heavy metal speciation on bioavailability to tubificid worms. Hydrobiologia 188/189: 487-496.

    Article  Google Scholar 

  • Graefe, U., 1991. Ein Enchytraeentest zur Bestimmung der Säure -und Metalltoxizität im Boden. Mitt. Dt. Bodenkdl. Ges. 66: 487–490.

    Google Scholar 

  • Hansen, D. J., W. J. Berry, J. D. Mahony, W. S. Boothman, D. M. DiToro, D. L. Robson, G. T. Ankley, D. Ma, Q. Yan & C. E. Pesch, 1996. Predicting the toxicity of metal-contaminated field sediments using interstitial concentration of metals and acid-volatile sulfide normalizations. Environ. Toxicol. Chem. 15: 2080–2094.

    Article  CAS  Google Scholar 

  • Harkey, G. A., P. F. Landrum & S. J. Klaine, 1994. Comparison of whole-sediment, elutriate and pore-water exposures for use in assessing sediment-associated organic contaminants in bioassays. Environ. Toxicol. Chem. 13: 1315–1329.

    Article  CAS  Google Scholar 

  • Hickey, C. W. & M. L. Martin, 1995. Relative sensitivity of five benthic invertebrate species to reference toxicants and resin-acid contaminated sediments. Environ. Toxicol. Chem. 14: 1401–1409.

    Article  CAS  Google Scholar 

  • Hill, R. A., P. M. Chapman, G. L. Mann & G. S. Lawrence, 2000. Level of detail in ecological risk assessments. Mar. Pollut. Bull. 40: 471–177.

    Article  CAS  Google Scholar 

  • Hynes, H. B. N., 1960. The Biology of Polluted Waters. Liverpool University Press, Liverpool U.K.

    Google Scholar 

  • Ingersoll, C. G., G. T. Ankley, D. A. Benoit, G. A. Burton, F. J. Dwyer, I. F. Greer, T. J. Norberg-King & P. V. Winger, 1995. Toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates: a review of methods and applications. Environ. Toxicol. Chem. 14: 1885–1894.

    Article  CAS  Google Scholar 

  • Ingersoll, C. G., T. Dillon & G. R. Biddinger, 1997. Ecological Risk Assessment of Contaminated Sediments. SETAC Press, Pensacola, FI.

    Google Scholar 

  • Jones, J. R. E., 1938. Antagonism between two heavy metals in their toxic action on freshwater animals. Proc. zool. Soc. Lond. A: 481–497.

    Google Scholar 

  • Kairesalo, T. & I. Kosimis, 1987. Grazing by oligochaetes and snails on epiphytes. Freshwat. Biol. 17: 317–324.

    Article  Google Scholar 

  • Karickhoff, S. W & K. R. Morris, 1985. Impact of tubificid oligochaetes on pollutant transport in bottom sediments. Environ. Sci. Technol. 19: 51–56.

    Article  Google Scholar 

  • Kaster, J. L., 1989. Observations on predator-prey interaction on dispersal of an oligochaete prey, Limnodrilus hoffmeisteri. Hydrobiologia 180: 191–193.

    Article  Google Scholar 

  • Keilty, T. J., D. S. White & P. F. Landrum, 1988a. Short-term lethality and sediment avoidance assays with endrin-contaminated sediment and two oligochaetes from Lake Michigan. Arch. Envir. Contam. Toxicol. 17: 95–101.

    Article  CAS  Google Scholar 

  • Keilty, T. J., D. S. White & P. F. Landrum, 1988b. Sublethal responses to endrin in sediment by Limnodrilus hoffmeisteri (Tu-bificidae), and in mixed-culture with Stylodrilus heringianus (Lumbriculidae). Aquat. Toxicol. 13: 227–250.

    Article  CAS  Google Scholar 

  • Keilty, T. J., D. S. White & P. F. Landrum, 1988c. Sublethal responses to endrin in sediment by Stylodrilus heringianus (Lumbriculidae) as measured by 137cesium marker layer technique. Aquat. Toxicol. 13: 251–270.

    Article  CAS  Google Scholar 

  • Kennedy, C. R., 1969. Tubificid oligochaetes as food for Dace Leuciscus leuciscus (L.). J. Fish. Biol. 1: 11–15.

    Article  Google Scholar 

  • Khangarot, B. S., 1991. Toxicity of metals to a freshwater tubificid worm, Tubifex tubifex (Müller). Bull, envir. Contam. Toxicol. 46: 906–912.

    Article  CAS  Google Scholar 

  • Klerks, P. L., 1999. Acclimation to pollutants by the grass shrimp Palaemonetes pugio: individual contaminants vs. mixtures. Ecotoxicology 8: 277–286.

    Article  CAS  Google Scholar 

  • Klerks, P. L. & J. S. Levinton, 1989. Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal-polluted site. Biol. Bull. 176: 135–141.

    Article  CAS  Google Scholar 

  • Klerks, P. L. & P. R. Bartholomew, 1991. Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hojfmeisteri. Aquat. Toxicol. 19: 97–112.

    Article  CAS  Google Scholar 

  • Klok, C. & A. M. de Roos, 1996. Population level consequences of toxicological influences on individual growth and reproduction in Lumbricus rubellus (Lumbricidae, Oligochaeta). Ecotox. Environ. Safe. 33: 118–127.

    Article  CAS  Google Scholar 

  • Klump, J. V., J. R. Krezoski, M. E. Smith & J. L. Kaster, 1987. Dual-tracer studies of the assimilation of an organic contaminant from sediments by deposit feeding oligochaetes. Can. J. Fish, aquat. Sci. 44: 1574–1583.

    Article  CAS  Google Scholar 

  • Kosian, P. A., E. A. Makynen, P. D. Monson, D. R. Mount, A. Spacie, O. G. Mekenyan & G. T. Ankley, 1998. Application of toxicity-based fractionation techniques and structure-activity relationship models for the identification of phototoxic polycyclic aromatic hydrocarbons in sediment pore water. Environ. Toxicol. Chem. 17: 1021–1033.

    CAS  Google Scholar 

  • Kukkonen, J. & P. F. Landrum, 1994. Toxicokinetics and toxicity of sediment-associated pyrene to Lumbriculus variegatus (Oligochaeta). Environ. Toxicol. Chem. 13: 1457–1468.

    Article  CAS  Google Scholar 

  • Kukkonen, J. & P. F. Landrum, 1995. Effects of sediment-bound polydimethylsiloxane on the bioavailability and distribution of benzo[a]pyrene in lake sediment to Lumbriculus variegatus. Environ. Toxicol. Chem. 14: 523–531.

    CAS  Google Scholar 

  • Landis, W. G., A. J. Markiewicz, R. A. Matthews & G. B. Matthews, 2000. A test of the community conditioning hypothesis: persistence of effects in model ecological structures dosed with the jet fuel JP-8. Environ. Toxicol. Chem. 19: 327–336.

    Article  CAS  Google Scholar 

  • Lang, C, 1997. Oligochaetes, organic sedimentation and trophic state: How to assess the biological recovery of sediments in lakes? Aquat. Sci. 59: 26–33.

    Article  Google Scholar 

  • Lee, B.-G., S. B. Griscom, J.-S. Lee, H. J. Choi, C.-H. Koh, S. N. Luoma & N. S. Fisher, 2000. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science 287: 282–284.

    Article  PubMed  CAS  Google Scholar 

  • Lenat, D. R., 1993. A biotic index for the Southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. J. n. am. Benthol. Soc. 12: 279–290.

    Article  Google Scholar 

  • Leppänen, M. T. & J. V. K. Kukkonen, 1998a. Relative importance of ingested sediment and pore water as bioaccumulation rates for pyrene to an oligochaete (Lumbriculus variegatus, Müller). Envir. Sci. Technol. 32: 1503–1508.

    Article  Google Scholar 

  • Leppänen, M. T. & J. V. K. Kukkonen, 1998b. Relationship between reproduction, sediment type and feeding of Lumbriculus variegatus (Müller): implications for sediment toxicity testing. Envir. Toxicol. Chem. 17: 2196–2202.

    Google Scholar 

  • Leppänen, M. T. & J. V. K. Kukkonen, 1998c. Factors affecting feeding rate, reproduction and growth of an oligochaete Lumbriculus variegatus (Müller). Hydrobiologia 377: 183–194.

    Article  Google Scholar 

  • Leslie, H. A., T. I. Pavluk, A. bij de Vaante & M. H. S. Kraak, 1999. Triad assessment of the impact of chromium contamination on benthic macroinvertebrates in the Chusovaya River (Urals, Russia). Arch. Envir. Contam. Toxicol. 37: 182–189.

    Article  CAS  Google Scholar 

  • Levinton, J. S. & S. Stewart, 1982. Marine succession: The effect of two deposit-feeding gastropod species on the population growth of Paranais litoralis Müller 1784 (Oligochaeta). J. exp. mar. Biol. Ecol. 59: 231–241.

    Article  Google Scholar 

  • Leynen, M., T. Van den Berckt, JU. M. Aerts, B. Castelein, D. Berckmans & F. Ollevier, 1999. The use of Tubificidae in a biological early warning system. Envir. Pollut. 105: 151–154.

    Article  CAS  Google Scholar 

  • Loden, M. S., 1974. Prédation by chironomid (Diptera) larvae on oligochaetes. Limnol. Oceanogr. 19: 156–159.

    Article  Google Scholar 

  • Lotufo, G. R. & J. W. Fleeger, 1996. Toxicity of sediment-associated pyrene and phenanthrene to Limnodrilus hojfmeisteri (Oligochaeta: Tubificidae). Environ. Toxicol. Chem. 15: 1508–1516.

    CAS  Google Scholar 

  • Lucan-Bouché, M.-L., S. Biagianti-Risbourg, F. Arsac & G. Vernet, 1999. An original decontamination process developed by the aquatic oligochaete Tubifex tubifex exposed to copper and lead. Aquat. Toxicol. 45: 9–17.

    Article  Google Scholar 

  • Mac, M. J., G. E. Noguchi, R. J. Hesselberg, C. C. Edsall, J. A. Shoesmith & J. D. Bowker, 1990. A bioaccumulation bioassay for freshwater sediments. Environ. Toxicol. Chem. 9: 1405–1414.

    Article  CAS  Google Scholar 

  • MacMichael, G. J., L. R. Brown & C. M. Ladner, 1988. An oligochaete as a potential food source for fish in aquaculture. Prog. Fish. Cult. 50: 31–35.

    Article  Google Scholar 

  • Maltby, L., 1999. Studying stress: the importance of organism-level responses. Ecol. Appl. 9: 431–440.

    Article  Google Scholar 

  • Malueg, K. W., G. S. Schuytema, D. F. Krawczyk & J. H. Gakstat-ter, 1984. Laboratory sediment toxicity tests, sediment chemistry and distribution of benthic macroinvertebrates in pediments from the Keweenaw Waterway, Michigan. Environ. Toxicol. Chem. 3: 233–242.

    Article  Google Scholar 

  • Marchese, M. R. & R. O. Brinkhurst, 1996. A comparison of two tubificid species as candidates for sublethal bioassay tests relevant to subtropical and tropical regions. Hydrobiologia 334: 163–168.

    Article  Google Scholar 

  • Marian, M. P. & T. J. Pandian, 1984. Culture and harvesting techniques for Tubifex tubifex. Aquaculture 42: 303–315.

    Article  Google Scholar 

  • Markwell, R. D., D. W. Connell & A. J. Gabric, 1989. Bioaccumulation of lipophilic compounds from sediments by oligochaetes. Wat. Res. 23: 1443–1451.

    Article  CAS  Google Scholar 

  • Martinez-Madrid, M., P. Rodriguez, J. I. Perez-Iglesias & E. Navarro, 1999. Sediment toxicity bioassay s for assessment of contaminated sites in the Nervion River (Northern Spain). 2. Tubifex tubifex (Müller) reproduction sediment bioassay. Ecotoxicology 8: 111–124.

    Article  CAS  Google Scholar 

  • McLusky, D. S., S. C. Hull & M. Elliott, 1993. Variations in the intertidal and subtidal macrofauna and sediments along a salinity gradient in the upper Forth estuary. Neth. J. aquat. Ecol. 27: 101–110.

    Article  Google Scholar 

  • McMurtry, M. J., 1984. Avoidance of sublethal doses of copper and zinc by tubificid oligochaetes. J. Great Lakes Res. 10: 267–272.

    Article  CAS  Google Scholar 

  • McPherson, C. A. & P. M. Chapman, 2000. Copper effects on potential sediment test organisms: the importance of appropriate sensitivity. Mar. Pollut. Bull. 40: 656–665.

    Article  CAS  Google Scholar 

  • Melier, M., Ph. Egeler, J. Römbke, I. I. Schallnass, R. Nagel & B. Streit, 1998. Short-term toxicity of lindane, hexachloroben-zene and copper sulfate to tubificid sludgeworms (Oligochaeta) in artificial media. Ecotox. Environ. Safe. 39: 10–20.

    Article  Google Scholar 

  • Milani, D., T. B. Reynoldson & J. Kolasa, 1998. The relative sensitivity of four benthic invertebrates to selected metals in water-only and in spiked sediment tests. 19th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Charlotte, NC, November 15-19, 1998. Abstract Book: 204.

    Google Scholar 

  • Milbrink, G., 1987. Biological characterization of sediments by standardized tubificid bioassays. Hydrobiologia 155: 267–275.

    Article  CAS  Google Scholar 

  • Mohanty, S., D. D. Reible, K. T. Valsaraj & L. J. Thiboreaux, 1998. A physical model for the simulation of bioturbation and its comparison to experiments with oligochaetes. Estuaries 21: 255–262.

    Article  Google Scholar 

  • Motalib, A., M. A. Rida & M. B. Bouche, 1997. Earthworm toxicity: from acute to chronic tests. Soil Biol. Biochem. 29: 699–703.

    Article  Google Scholar 

  • Mount, D. R., T. D. Dawson & L. R Burkhard, 1999. Implications of gut purging for tissue residues determined in bioaccumulation testing of sediment with Lumbriculus variegatus. Environ. Toxicol. Chem. 18: 1244–1249.

    CAS  Google Scholar 

  • Nebeker, A. V., W. L. Griffis, C. M. Wise, E. Hopkins & J. A. Barbitta, 1989. Survival, reproduction and bioconcentration in invertebrates and fish exposed to hexachlorobenzene. Environ. Toxicol. Chem. 8: 601–611.

    Article  CAS  Google Scholar 

  • Odum, E. P., 1984. The mesocosm. Bioscience 34: 558–562.

    Article  Google Scholar 

  • Oliver, B. G., 1984. Uptake of chlorinated organics from anthropo-genically contaminated sediments by oligochaete worms. Can. J. Fish, aquat. Sci. 41: 878–883.

    Article  CAS  Google Scholar 

  • Oliver, B. G., 1987. Biouptake of chlorinated hydrocarbons from laboratory-spiked and field sediments by oligochaete worms. Environ. Sci. Technol. 21: 785–790.

    Article  PubMed  CAS  Google Scholar 

  • Pascoe, D., A. Wentzel, C. Janssen, A. E. Girling, I. Jiittner, A. Fliedner, S. J. Blockwell, S. J. Maund, E. J. Taylor, M. Diedrich, G. Persoone, P. Verhelst, R. R. Stephenson, N. O. Crossland, G. C. Mitchell, N. Pearson, L. Tattersfield, J.-P. Lay, A. Peither, B. Neumeier, & A.-R. Velletti, 2000. The development of toxicity tests for freshwater pollutants and their validation in stream and pond mesocosms. Wat. Res. 34: 2323–2329.

    Article  CAS  Google Scholar 

  • Patrick, F. M. & M. Loutit, 1976. Passage of metals, in effluents, through bacteria to higher organisms. Wat. Res. 10: 333–335.

    Article  CAS  Google Scholar 

  • Patrick, F. M. & M. Loutit, 1978. Passage of metals to freshwater fish from their food. Wat. Res. 12: 395–398.

    Article  CAS  Google Scholar 

  • Peterson, G. S., G. T. Ankley & E. N. Leonard, 1996. Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments. Environ. Toxicol. Chem. 15: 2147–2155.

    CAS  Google Scholar 

  • Phillips, G. R. & D. R. Buhler, 1978. Influences of dieldrin on the growth and body composition of fingerling rainbow trout (Salmo gairdneri) fed Oregon Moist Pellets or Tubificid worms (Tubifex sp.). J. Fish. Res. Bd Can. 36: 77–80.

    Article  Google Scholar 

  • Phipps, G. L., G. T. Ankley, D. A. Benoit & V. R. Mattson, 1993. Use of the aquatic oligochaete Lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants. Environ. Toxicol. Chem. 12: 269–274.

    CAS  Google Scholar 

  • Phipps, G. L., V. R. Mattson & G. T. Ankley, 1995. Relative sensitivity of three freshwater benthic macroinvertebrates to ten contaminants. Arch, envir. Contam. Toxicol. 28: 281–286.

    Article  CAS  Google Scholar 

  • Poddubnaya, T. L., 1962. The consumption of tubificids by fish. Vop Ikhtiol. 2: 560–562 (in Russian).

    Google Scholar 

  • Popchenko, V. I., 1971. Consumption of Oligochaeta by fishes and invertebrates. J. Ichtyol. 11: 75–80.

    Google Scholar 

  • Prygiel, J., A. Rosso-Darmet, M. Lafont, C. Lesniak, A. Durbec & B. Ouddane, 2000. Use of oligochaete communities for assessment of ecotoxicological risk in fine sediment of rivers and canals of the Artois-Picardie water basin (France). Hydrobiologia 410: 25–37.

    Article  Google Scholar 

  • Quammen, M. L., 1984. Prédation by shorebirds, fish, and crabs on invertebrates in intertidal mudflats: an experimental test. Ecology 65:529–537.

    Article  Google Scholar 

  • Ram, R. N. & J. W. Gillett, 1993. Comparison of alternative models for predicting the uptake of chlorinated hydrocarbons by oligochaetes. Ecotox. Environ. Safe. 26: 166–180.

    Article  CAS  Google Scholar 

  • Reinhold, J. O., A. J. Hendriks, L. K. Slager & M. Ohm. 1999. Transfer of microcontaminants from sediment to chironomids, and the risk for the Pond bat Myotis dasyeneme (Chiroptera) preying on them. Aquat. Ecol. 33: 363–376.

    Article  CAS  Google Scholar 

  • Reynoldson, T. B., 1987. The role of environmental factors in the ecology of tubificid oligochaetes - an experimental study. Holarct. Ecol. 10: 241–248.

    Google Scholar 

  • Reynoldson, T. B. & P. Rodriguez, 1999. Field methods and interpretation for sediment bioassessment. In Mudroch, A. M., J. M. Azcue & P. Mudroch (eds), Manual of Bioassessment of Aquatic Sediment Quality. Lewis Publishers, Boca Raton: 135–175.

    Google Scholar 

  • Reynoldson, T. B., S. P. Thompson & J. L. Bamsey, 1991. A sediment bioassay using the tubificid oligochaete worm Tubifex tubifex. Environ. Toxicol. Chem. 10: 1061–1072.

    CAS  Google Scholar 

  • Reynoldson, T. B., K. E. Day, C. Clarke & D. Milani, 1994. Effect of indigenous animals on chronic end points in freshwater sediment toxicity tests. Environ. Toxicol. Chem. 13: 973–977.

    Article  CAS  Google Scholar 

  • Rinderhagen, M. & W. Butte, 1995. Kinetics of accumulation and elimination of isomeric hexachlorocylohexanes by tubificids. SAR and QSAR in Environmental Research 4: 131–138.

    Article  CAS  Google Scholar 

  • Rodriguez, P. & T. B. Reynoldson, 1999. Laboratory methods and criteria for sediment bioassessment. In Mudroch, A. M., J. M. Azcue & P. Mudroch (eds), Manual of Bioassessment of Aquatic Sediment Quality. Lewis Publishers, Boca Raton: 83–133.

    Google Scholar 

  • Rofritz, D. J., 1977. Oligochaeta as a winter food source for the Old Squaw. J. Wildlife Manage. 41: 590–591.

    Article  Google Scholar 

  • Rogge, R. W. & C. D. Drewes, 1993. Assessing sublethal neurotoxicity effects in the freshwater oligochaete, Lumbriculus variegatus. Aquat. Toxicol. 26: 73–90.

    Article  CAS  Google Scholar 

  • Römbke, J. & Th. Knacker, 1989. Aquatic toxicity test for En-chytraeids. Hydrobiologia 180: 235–242.

    Article  Google Scholar 

  • Rosso, A., M. Lafont & A. Exinger, 1994. Impact of heavy metals on benthic oligochaete communities in the river 111 and its tributaries. Wat. Sci. Technol. 29: 241–248.

    CAS  Google Scholar 

  • Schaeffer, D. J., W. H. Ettinger, W. J. Tucker & H. W. Kerster, 1985. Evaluation of a community-based index using benthic indicator-organisms for classifying stream quality. J. Wat. Pollut. Cont. Fed. 57: 167–171.

    Google Scholar 

  • Schubauer-Berigan, M. K., P. D. Monson, C. W. West & G. T. Ankley, 1995. The influence of pH on the toxicity of ammonia to Chironomus tentans and Lumbriculus variegatus. Environ. Toxicol. Chem. 14: 713–717.

    CAS  Google Scholar 

  • Schuytema, G. S., D. F. Krawczyk, W. L. Griffis, A. V. Ne-beker, M. L. Robideaux, B. J. Brownalee & J. C. Westall, 1988. Comparative uptake of hexachlorobenzene by fathead minnows, amphipods and oligochaete worms from water and sediment. Environ. Toxicol. Chem. 7: 1035–1045.

    Article  CAS  Google Scholar 

  • Seys, J., M. Vinex & P. Meire, 1999. Spatial distribution of oligochaetes (Clitellata) in the tidal freshwater and brackish parts of the Scheide estuary (Belgium). Hydrobiologia 406: 119–132.

    Article  Google Scholar 

  • Smith, D. P., J. H. Kennedy & K. L. Dickson, 1991. An evaluation of a naidid oligochaete as a toxicity test organism. Environ. Toxicol. Chem. 10: 1459–1465.

    Article  CAS  Google Scholar 

  • Standley, L. J., 1997. Effect of sedimentary organic matter composition on the partitioning and bioavailability of dieldrin to the oligochaete Lumbriculus variegatus. Environ. Sci. Technol. 31: 2577–2583.

    Article  CAS  Google Scholar 

  • Strangenberg, M., 1956. The growth and the summer food of the economically most important fishes of the Goplo Lake. Zool. Pol. 7: 63–120.

    Google Scholar 

  • Swift, M. C, T. J. Canfield & T. W. LaPoint, 1996. Sampling benthic communities for sediment toxicity assessments using grab samplers and artificial substrates. J. Great Lakes Res. 22: 557–564.

    Article  CAS  Google Scholar 

  • Thompson, D. J., 1978. The natural prey of larvae of the damselfly, Ischnura elegans (Odonata: Zygoptera). Freshwat. Biol. 8: 377–384.

    Article  Google Scholar 

  • Thompson, K. A., D. A. Brown, P. M. Chapman & R. O. Brinkhurst, 1982. Histopathological effects and cadmium-binding protein synthesis in the marine oligochaete Monopylephorus cuticulatus following cadmium exposure. Trans, am. micros. Soc. 101: 10–26.

    Article  CAS  Google Scholar 

  • U.S. EPA, 1992. Framework for ecological risk assessment. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC. EPA/630/R-92/001.

    Google Scholar 

  • U.S. EPA, 2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC. EPA/600/R-99/064.

    Google Scholar 

  • Vecchi, M., T. B. Reynoldson, A. Pasteris & G. Bonomi, 1999. Toxicity of copper-spiked sediments to Tubifex tubifex (Oligochaeta, Tubificidae): comparison of the 28-day reproductive bioassay with an early-life-stage bioassay. Environ. Toxicol. Chem. 18: 1173–1179.

    CAS  Google Scholar 

  • Verdonschot, P. F. M. & C. J. T. Ter Braak, 1994. An experimental manipulation of oligochaete communities in mesocosms treated with chlorpyrifos or nutrient additions: multivariate analyses with Monte Carlo permutation tests. Hydrobiologia 278: 251–266.

    Article  Google Scholar 

  • Voparil, I. M. & L. M. Mayer, 2000. Dissolution of sedimentary poly cyclic aromatic hydrocarbons into the lugworm’s (Arenicola marina) digestive fluids. Environ. Sci. Technol. 34: 1221–1228.

    Article  CAS  Google Scholar 

  • Wallace, W. G., G. R. Lopez & J. S. Levinton, 1998. Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp. Mar. Ecol. Prog. Ser. 172: 225–237.

    Article  CAS  Google Scholar 

  • Wang, X. & G. Matisoff, 1997. Solute transport in sediments by a large freshwater oligochaete, Branchiura sowerbyi. Environ. Sci. Technol. 31: 1926–1933.

    Article  CAS  Google Scholar 

  • Warren, L. A., A. Tessier & L. Hare, 1998. Modelling cadmium accumulation by benthic invertebrates in situ: the relative contributions of sediment and overlying water reservoirs to organism cadmium concentrations. Limnol. Oceanogr. 43: 1442–1454.

    Article  CAS  Google Scholar 

  • Watzin, M. C, A. W. Mcintosh, E. A. Brown, R. Lacey, D. C. Lester, K. L. Newbrough & A. R. Williams, 1997. Assessing sediment quality in heterogeneous environments: a case study of a small urban harbor in Lake Champlain, Vermont, U.S.A. Environ. Toxicol. Chem. 16: 2125–2135.

    CAS  Google Scholar 

  • West, C. W. & G. T. Ankley, 1998. A laboratory assay to assess avoidance of contaminated sediments by the freshwater oligochaete Lumbriculus variegatus. Arch, envir. Contam. Toxicol. 35: 20–24.

    Article  CAS  Google Scholar 

  • West, C. W., V. R. Mattson, E. N. Leonard, G. L. Phipps & G. T. Ankley, 1993. Comparison of the relative sensitivity of three benthic invertebrates to copper-contaminated sediments from the Keweenaw Waterway. Hydrobiologia 262: 57–63.

    Article  CAS  Google Scholar 

  • West, C. W., G. T. Ankley, J. W. Nichols, G. E. Elohen & D. E. Nessa, 1997. Toxicity and bioaccumulation of 2,3,7,8-tetrachloro-dibenzo-p-dioxin in long-term tests with the freshwater benthic invertebrates Chironomus tentans and Lumbriculus variegatus. Environ. Contam. Toxicol. 16: 1287–1294.

    CAS  Google Scholar 

  • Weston, D. P., D. L. Penry & L. K. Gulmann, 2000. The role of ingestion as a route of contaminant bioaccumulation in a deposit-feeding polychaete. Arch, envir. Contam. Toxicol. 38: 446–454.

    Article  CAS  Google Scholar 

  • White, D. S. & T. J. Keilty, 1988. Burrowing avoidance assays of contaminated Detroit River sediments using the freshwater oligochaete, Stylodrilus heringianus (Lumbriculidae). Arch, envir. Contam. Toxicol. 17: 673–681.

    Article  CAS  Google Scholar 

  • Whiteman, F. W., G. T. Ankley, M. D. Kahl, D. M. Rau & M. D. Bal-cer, 1996. Evaluation of interstitial water as a route of exposure for ammonia in sediment tests with benthic macroinvertebrates. Environ. Toxicol. Chem. 15: 794–801.

    Article  CAS  Google Scholar 

  • Whitley, L. S., 1967. The resistance of tubificid worms to three common pollutants. Hydrobiologia 32: 193–205.

    Article  Google Scholar 

  • Wiederholm, T. & G. Dave, 1989. Toxicity of metal polluted sediments to Daphnia magna and Tubifex tubifex. Hydrobiologia 176/177: 411–417.

    Article  Google Scholar 

  • Wiederholm, T., A. M. Wiederholm & G. Milbrink, 1987. Bulk sediment bioassays with five species of freshwater oligochaetes. Wat. Air Soil Pollut. 36: 131–154.

    Article  CAS  Google Scholar 

  • Wildhaber, M. L. & C. J. Schmitt, 1996. Hazard ranking of contaminated sediments based on chemical analysis, laboratory toxicity tests and benthic community composition: prioritizing sites for remedial action. J. Great Lakes Res. 22: 639–652.

    Article  CAS  Google Scholar 

  • Wildhaber, M. L. & C. J. Schmitt, 1998. Indices of benthic community tolerance in contaminated Great Lakes sediments: relations with sediment contaminant concentrations, sediment toxicity and the Sediment Quality Triad. Environ. Monit. Assess. 49: 23–49.

    Article  CAS  Google Scholar 

  • Wisniewski, R. J., 1978. Effect of predators on Tubificidae groupings and their production in lakes. Ekol. pol. 26: 493–512.

    Google Scholar 

  • Yaroshenko, M. F., O. I. Val’kovskaya & V. Kh. Chokyrlan, 1980. Fresh-water Oligochaeta and their importance as food for fish. In Aquatic Oligochaete Worms: Taxonomy, Ecology and Faunistic Studies in the U.S.S.R. Amerind Publ. Co., New Delhi: 191–196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Chapman, P.M. (2001). Utility and relevance of aquatic oligochaetes in Ecological Risk Assessment. In: Rodriguez, P., Verdonschot, P.F.M. (eds) Aquatic Oligochaete Biology VIII. Developments in Hydrobiology, vol 158. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0597-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0597-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3887-4

  • Online ISBN: 978-94-010-0597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics