Skip to main content

Multigrid methods: from geometrical to algebraic versions

  • Chapter
Modern Methods in Scientific Computing and Applications

Part of the book series: NATO Science Series ((NAII,volume 75))

Abstract

Nowadays the multigrid technique is one of the most efficient methods for solving a large class of problems including elliptic boundary value problems for partial differential equations (PDEs) or systems of PDEs. Our lecture notes start with a motivation for the multigrid idea and a brief review of the multigrid history, its situation and the perspectives. The next part of our paper is devoted to the algorithmical aspects of the construction of multigrid methods including also algebraic approaches and parallelization techniques. Algebraic multigrid methods are now quite popular in practical applications because they can be included in conventional finite element packages without changing the data structure of the package. In the theoretical part of our lecture, we present some general approaches to the convergence and efficiency analysis of multigrid methods. Finally, we discuss implementation issues and present some numerical results obtained from the application of our algebraic multigrid package PEBBLES to large-scale problems in medicine and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Anwander, M. Kuhn, S. Reitzinger, and C. Wolters, A parallel algebraic multigrid solver for the finite element method source localization in the human brain,Computing and Visualization in Science, 2002 (to appear).

    Google Scholar 

  2. G. P. Astrachancev, An iterative method for solving elliptic net problems, USSR Computational Math, and Math. Phys. 11 (2) (1971), 171–182.

    Article  Google Scholar 

  3. O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.

    Book  MATH  Google Scholar 

  4. N. S. Bachvalov, On the convergence of a relaxation method with natural constraints on the elliptic operator,USSR Computational Math, and Math. Phys. 6 (5) (1966), 101–135.

    Article  Google Scholar 

  5. R. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, SIAM, Philadelphia, PA, 1994.

    MATH  Google Scholar 

  6. B. Bastian, Parallele Adaptive Mehrgitterverfahren, Teubner Skr. Numer., B.G. Teubner, Stuttgart, 1996.

    MATH  Google Scholar 

  7. P. Bastian, UG version 2.0 - short manual, Preprint 92–14, IWR Heidelberg, 1992.

    Google Scholar 

  8. F. A. Bornemann and P. Deuflhard, The cascadic multigrid method for elliptic problems, Numer. Math. 75 (1996), 135–152.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Braess, Towards algebraic multigrid for elliptic problems of second order, Computing 55 (1995), 379–393.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Braess, Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  11. D. Braess, M. Dryja, and W. Hackbusch, A multigrid method for nonconforming fe-discretisations with application to non-matching grids, Computing 63 (1999), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Braess and W. Hackbusch, A new convergence proof for the multigrid method including the V-cycle, SIAM J. Numer. Anal. 20 (1983), 967–975.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. H. Bramble, Multigrid Methods, Pitman Res. Notes Math. Ser. 294, Longman Sci. Tech., Harlow, 1993.

    MATH  Google Scholar 

  14. J. H. Bramble and J. E. Pasciak, New convergence estimates for multigrid algorithms, Math. Comput 49 (180) (1987), 311–329.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. H. Bramble and J. E. Pasciak, New estimates for multilevel algorithms including the F-cycle, Math. Comput 60 (1993), 447–471.

    MathSciNet  MATH  Google Scholar 

  16. A. Brandt, Multi-level adaptive techniques (MLAT) for fast numerical solution to boundary value problems, in: Proc. 3rd Internat. Conf. on Numerical Methods in Fluid Mechanics, Paris, 1972, Lecture Notes in Phys., Springer-Verlag, Berlin-Heidelberg-New York, 1973.

    Google Scholar 

  17. A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comput. 31 (1977), 333–390.

    Article  MATH  Google Scholar 

  18. A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput. 19 (1986), 23–56.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Brandt, Multiscale scientific computation: Review 2001, in: Multiscale and Multiresolution Methods (T. Barth, R. Haimes, and T. Chan, eds.), Springer-Verlag, Berlin-Heidelberg-New York, 2001.

    Google Scholar 

  20. A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in: Sparsity and Its Applications (D. J. Evans, ed.), Cambridge University Press, Cambridge, 1985, 257–284.

    Google Scholar 

  21. A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for automatic multigrid solution with application in geodetic computations, Technical Report CO POB 1852, Inst. Comp. Studies State Univ., 1982.

    Google Scholar 

  22. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  23. M. Brezina, A. Cleary, R. Falgout, V. Henson, J. Jones, T. Manteuffel, S. McCormick, and J. Ruge, Algebraic multigrid based on element interpolation (AMGe), SIAM J. Sci. Comput. 22 (5) (2000), 1570–1592.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, 2nd ed., SIAM, Philadelphia, PA, 2000.

    Book  MATH  Google Scholar 

  25. P. Deuflhard, Cascadic conjugate gradient methods for elliptic partial differential equations I: Algorithm and numerical results, Preprint SC 93–23, Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1993.

    Google Scholar 

  26. E. Dick, K. Riemslagh, and J. Vierendeels, eds., Multigrid Methods VI. Proceedings Sixth European Multigrid Conference, Springer-Verlag, Berlin, 2000, 27–30.

    Google Scholar 

  27. C. Douglas, G. Haase, and U. Langer,A Tutorial on Elliptic PDEs and Parallel Solution Methods, SIAM, 2002, in preparation.

    Google Scholar 

  28. R. P. Fedorenko, A relaxation method for elliptic difference equations, USSR Computational Math, and Math. Phys. 1 (5) (1961), 1092–1096.

    MathSciNet  MATH  Google Scholar 

  29. R. P. Fedorenko, The speed of convergence of one iterative process, USSR Computational Math, and Math. Phys. 4 (3) (1964), 227–235.

    Article  Google Scholar 

  30. T. Grauschopf, M. Griebel, and H. Regler, Additive multilevel-preconditioners based on bilinear interpolation, matrix dependent geometric coarsening and algebraic-multigrid coarsening for second order elliptic PDEs, SFB-Bericht Nr. 342/02/96, Technische Uni-versität, München, 1996.

    Google Scholar 

  31. G. Haase, A parallel AMG for overlapping and non-overlapping domain decomposition, Electron. Trans. Numer. Anal. 10 (2000), 41–55.

    MathSciNet  MATH  Google Scholar 

  32. G. Haase, M. Kuhn, and U. Langer, Parallel multigrid 3d Maxwell solvers, Parallel Comput.6 (27) (2001), 761–775.

    Article  MathSciNet  Google Scholar 

  33. G. Haase, M. Kuhn, U. Langer, S. Reitzinger, and J. Schöberl, Parallel Maxwell solvers, in: Scientific Computing in Electrical Engineering (U. van Rienen, M. Günther, and D. Hecht, eds.), Springer-Verlag, Berlin-Heidelberg-New York, 2000, 71–78.

    Google Scholar 

  34. G. Haase, M. Kuhn, and S. Reitzinger, Parallel AMG on distributed memory computers, SIAM SISC (2002), to appear.

    Google Scholar 

  35. G. Haase, U. Langer, and A. Meyer, The approximate Dirichlet decomposition method. I, II, Computing 47 (1991), 137–167.

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Haase, U. Langer, S. Reitzinger, and J. Schöberl, Algebraic multigrid methods based on element preconditioning, Internat. J. Computer Math. 80 (3–4) (2001).

    Google Scholar 

  37. W. Hackbusch, Implementation of the multi-grid method for solving partial differential equations, Technical Report RA 82, IBM T. J. Watson Research Centre, 1976.

    Google Scholar 

  38. W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  39. W. Hackbusch and U. Trottenberg, eds., First European Conference on Multigrid Methods, Lecture Notes in Math. 960, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

    Google Scholar 

  40. W. Hackbusch and U. Trottenberg, eds, Second European Conference on Multigrid Methods, Lecture Notes in Math. 1228, Springer-Verlag, Berlin-Heidelberg-New York, 1986.

    Google Scholar 

  41. W. Hackbusch and U. Trottenberg, eds, Third European Conference on Multigrid Methods, Internat. Ser. Numer. Math. 98, Birkhäuser, Basel, 1991.

    MATH  Google Scholar 

  42. W. Hackbusch and G. Wittum, eds., Multigrid Methods V. Proceedings of the Fifth European Multigrid Conference, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  43. P. W. Hemker and P. Wesseling, eds., Multigrid Methods IV. Proceedings of the Fourth European Multigrid Conference, Birkhäuser, Basel, 1994.

    MATH  Google Scholar 

  44. V. Henson and P. Vassilevski, Element-free AMGe: General algorithms for computing interpolation weights in AMG, SIAM J. Sci. Comput. 23 (2) (2001), 629–650.

    Article  MathSciNet  MATH  Google Scholar 

  45. V. E. Henson and U. M. Yang, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Technical Report UCRL-JC-141495, Lawrence Livermore National Laboratory, 2000.

    Google Scholar 

  46. R. Hiptmair, Multigrid methods for Maxwell’s equations, SIAM J. Numer. Anal. 36 (1999), 204–225.

    Article  MathSciNet  Google Scholar 

  47. J. Jones and P. Vassilevski, AMGe based on element agglomeration, SIAM J. Sci. Comput. 23 (1) (2001), 109–133.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Jung, On the parallelization of multi-grid methods using a non-overlapping domain decomposition data structure, Appl. Numer. Math. 23 (1) (1997), 119–137.

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Jung and U. Langer, Applications of multilevel methods to practical problems, Surveys Math. Industry 1 (1991), 217–257.

    MathSciNet  MATH  Google Scholar 

  50. M. Jung, U. Langer, A. Meyer, W. Queck, and M. Schneider, Multigrid preconditioners and their applications, in: Proc. 3rd Multigrid Seminar, Biesenthal, GDR, 1989 (G. Telschow, ed.), Report-Nr. R-MATH-03/89, Karl-Weierstrass-Institute of the Academy of Science of the GDR, Berlin, 1989, 11–52.

    Google Scholar 

  51. M. Kaltenbacher, S. Reitzinger, and J. Schöberl, Algebraic multigrid for solving 3D nonlinear electrostatic and magnetostatic field problems, IEEE Trans. Magnetics 36 (4) (2000), 1561–1564.

    Article  Google Scholar 

  52. F. Kickinger, Algebraic multigrid for discrete elliptic second-order problems, in: Multigrid Methos V. Proc. 5th European Multigrid Conf. (W. Hackbusch, ed.), Lecture Notes in Comput. Sci. Engrg. 3, Springer-Verlag, New York, 1998, 157–172.

    Google Scholar 

  53. V. G. Korneev, Finite Element Schemes of Higher Order of Accuracy, Leningrad University Press, Leningrad, 1977, (Russian).

    Google Scholar 

  54. A. Krechel and K. Stüben, Parallel algebraic multigrid based on subdomain blocking, Parallel Comput.8 (27) (2001), 1009–1031.

    Article  Google Scholar 

  55. M. Kuhn, U. Langer, and J. Schöberl, Scientific computing tools for 3d magnetic field prpblems, in: The Mathematics of Finite Elements and Applications (J. R. Witheman, ed.), Elsevier, Amsterdam, 2000, 239–258.

    Google Scholar 

  56. U. Langer, On the choice of iterative parameters in the relaxation method on a sequence of meshes, USSR Computational Math, and Math. Phys. 22 (5) (1982), 98–114.

    Article  MATH  Google Scholar 

  57. K. H. Law, A parallel finite element solution method, Comput. & Structures 23 (6) (1989), 845–858.

    Article  Google Scholar 

  58. S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, Frontiers Appl. Math. 6, SIAM, Philadelphia, PA, 1989.

    Book  MATH  Google Scholar 

  59. G. Meurant, Computer Solution of Large Systems, North-Holland, Amsterdam, 1999.

    MATH  Google Scholar 

  60. S. Reitzinger, Algebraic Multigrid Methods for Large Scale Finite Element Equations, Universitätsverlag Rudolf Trauner, Linz, 2001.

    Google Scholar 

  61. S. Reitzinger and J. Schöberl, An algebraic multigrid method for finite element discretization with edge elements, Numer. Linear Algebra Appl. (2002), to appear.

    Google Scholar 

  62. U. Rüde, Mathematical and Computational Techniques for Multilevel Adaptive Methods, Frontiers Appl. Math. 13, SIAM, Philadelphia, PA, 1993.

    Book  MATH  Google Scholar 

  63. J. W. Ruge and K. Stüben, Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG), in: Multigrid Methods for Integral and Differential Equations (D. J. Paddon and H. Holstein, eds.), Inst. Math. Appl. Conf. Ser., Clarendon Press, Oxford, 1985, 169–212.

    Google Scholar 

  64. J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in: Multigrid Methods (S. F. McCormick, ed.), Frontiers Appl. Math. 3, SIAM, Philadelphia, PA, 1987, 73–130.

    Chapter  Google Scholar 

  65. J. Schöberl, Multigrid methods for a parameter dependent problem in primal variables, Numer. Math. 84 (1999), 97–119.

    Article  MathSciNet  MATH  Google Scholar 

  66. V. V. Shaidurov, Multigrid Methods for Finite Elements, Kluwer, Dordrecht, 1995.

    MATH  Google Scholar 

  67. K. Stüben, Algebraic multigrid: An introduction with applications, in: Multigrid (U. Trottenberg, C. Oosterlee, and A. Schüller, eds.), Academic Press, 2000, 413–532.

    Google Scholar 

  68. K. Stüben, A review of algebraic multigrid, J. Comput Appl. Math. 128 (2001), 281– 309.

    Article  MathSciNet  MATH  Google Scholar 

  69. U. Trottenberg, C. Oosterlee, and A. Schüller, eds., Multigrid, Academic Press, 2000.

    Google Scholar 

  70. St. Vandewalle, Parallel Multigrid Waveform Relaxation for Parabolic Problems, Teubner, Stuttgart, 1993.

    Google Scholar 

  71. P. Vaněk, Acceleration of convergence of a two level algorithm by smoothing transfer operators, Appl. Math. 37 (1992), 265–274.

    MathSciNet  MATH  Google Scholar 

  72. P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed aggregation for second and fourth order problems, Computing 56 (1996), 179–196.

    Article  MathSciNet  MATH  Google Scholar 

  73. P. Wesseling, An Introduction to Multigrid Methods, Wiley, Chichester, 1992.

    MATH  Google Scholar 

  74. H. Yserentant, Old and new convergence proofs for multigrid methods, in: Acta Numerica, Cambridge University Press, 1993, 285–326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haase, G., Langer, U. (2002). Multigrid methods: from geometrical to algebraic versions. In: Bourlioux, A., Gander, M.J., Sabidussi, G. (eds) Modern Methods in Scientific Computing and Applications. NATO Science Series, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0510-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0510-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0782-8

  • Online ISBN: 978-94-010-0510-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics