Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 60))

Abstract

The standard physical model for the interaction of radiation with matter, widely used to calculate the transfer of energy, can also be used to model the exchange process for virtual gravitons. Using this approach, it is possible to derive Newton’s law of gravitation and to show that the gravitational constant G (kg-1 m3 s-2) is comprised of other physical constants, including the atomic mass unit, u (kg), the speed of light, c (ms-1) and Planck’s constant h (kg m2 s-1). The model is shown to be compliant with the weak equivalence principle and is therefore consistent with experimental observation, apart from the well known exceptions that are explained by General Relativity. An alternative physical model for graviton exchange is also presented which gives an identical formulation for G. The models lead to a prediction of an increase in G with temperature.

*

M J Clark is at the National Radiological Protection Board, Chilton, Didcot, OX11 ORQ, UK and this address should be used for correspondence (e-mail mike.clark@nrpb.org.uk).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. International Commission on Radiation Units and Measurements, in Fundamental Quantities and Units for Ionising Radiation, ICRU Report 60 (ICRU, Bethesda MD, 1998).

    Google Scholar 

  2. A. B. Chilton, J. K. Shultis & R. E. FawPrinciples of Radiation Shielding (Prentice-Hall, NJ, 1984).

    Google Scholar 

  3. P. A. M. Dirac, in Quantum Mechanics (4th edition, Oxford: Clarendon Press, 1958).

    MATH  Google Scholar 

  4. R. P. Feynman, F. B. Marinigo and W. G. Wagner, in Feynman Lectures on Gravitation, edited by B. Hatfield (Addison-Wesley, Reading MA, 1995).

    Google Scholar 

  5. P. C. W. Davies, in The Forces of Nature (2nd Edition Cambridge University Press, Cambridge UK, 1987).

    Google Scholar 

  6. R. B. Leighton, in Principles of Modern Physics (McGraw-Hill, N Y, 1959).

    Google Scholar 

  7. H. A. Bethe and J. Ashkin, in Experimental Nuclear Physics, edited by E. Segre (J. Wiley & Sons, NY, 1953), Vol. 1, Chap. Passage of radiations through matter.

    Google Scholar 

  8. W. S. C. Williams, in Nuclear and Particle Physics (Clarendon Press, Oxford UK, 1996).

    Google Scholar 

  9. J. W. Rohlf, in Modern Physics from α to Z 0 Wiley & Sons, Inc., New York, 1994).

    Google Scholar 

  10. A. Cook, Rep. Prog. Phys. 51, 707–757 (1988).

    Article  ADS  Google Scholar 

  11. G. T. Gillies, Rep. Prog. Phys. 60, 151–225 (1997).

    Article  ADS  Google Scholar 

  12. R. v. Eotvos, D. Pekar and E. Fekete, Ann. Phys.(Leipzig) 68, 11 (1922).

    Article  Google Scholar 

  13. J. H. Gundlach, G. L. Smith, E. G. Adelberger, B. R. Heckel and H. E. Swanson, Phys. Rev. Lett. 78, 2523 (1997).

    Article  ADS  Google Scholar 

  14. G. L. Smith, C. D. Hoyle, J. H. Gundlach, E. G. Adelberger, B. R. Heckel and H. E. Swanson, Phys. Rev. D 61, 022001 (1999).

    Google Scholar 

  15. A. L. Sanders et alia, Meas. Sci. Tech. 10(6), 514–524 (1999).

    Article  ADS  Google Scholar 

  16. C. Massa, Helv. Phys. Act. 62, 420–423 (1989).

    Google Scholar 

  17. C. Massa, Helv. Phys. Act. 62, 424–426 (1989).

    Google Scholar 

  18. A. K. T. Assis and R. A. Clemente, Nuovo Cimento B 108(6), 713–716 (1993).

    ADS  Google Scholar 

  19. M J Clark, submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clark, M.J. (2002). Radiation and Gravitation. In: Bergmann, P.G., de Sabbata, V. (eds) Advances in the Interplay Between Quantum and Gravity Physics. NATO Science Series, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0347-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0347-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0593-0

  • Online ISBN: 978-94-010-0347-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics