Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 58))

Abstract

ELTRAN® (Epitaxial Layer TRANsfer), which is the first manufacturable and commercially available product using Porous Si, has been originated, developed and produced in Canon Inc., Japan. The last established technique is highly reproducible splitting in the Porous Si layer by Water Jet and reuse the seed wafer several times. The thicknesses of both SOI and the buried oxide layers are precisely controlled in the very wide range from the extremely thin as 27 nm to as thick as a few μm with the thickness uniformity less than +/- 5 %. The active layer has no COP (Crystal Originated Particle or Pits) by epitaxial growth. The buried oxide is thermally grown on epitaxial Si layers and has no pinholes. We have successfully expanded the wafers to 300-mm (12-inch) diameter, in which SOI-thickness-uniformity of ±1.1% was even better than 8 inch

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.canon.co.jp/eltran

    Google Scholar 

  2. http://www.digital-contents.com

    Google Scholar 

  3. Yonehara, T., Sakaguchi, K. and Sato, N. (1994) Epitaxial Layer Transfer by Bond and Etch Back of Porous Si, Appl. Phys. Lett. 64, 2108–2110.

    Article  Google Scholar 

  4. Yonehara, T., Sakaguchi, K. and Sato, N. (1999) ELTRAN®; Epitaxial Layer Transfer, in P.H.L. Hemment (ed.), Proc. 9th Int. Symp. on Silicon-on-Insulator Tech. and Devices 99-3, The Electrochemical Society, Seattle, pp. 111–12

    Google Scholar 

  5. Yonehara, T. (1999) SOI-Epi Wafers, Break Through, April 1999 edition, Realize Inc., Tokyo, pp.15–18 (in Japanese).

    Google Scholar 

  6. Mitani, K. (1998) Technical Challenge in High Volume Unibond SOI Wafer Manufacturing, SEMI® Silicon-on-Insulator (SOI) Manufacturing Technology, SEMIC0N West 98, San Francisco, pp.H-l-H-12.

    Google Scholar 

  7. Sato, N. and Yonehara, T (1994) Hydrogen Annealed Silicon-on-Insulator, Appl. Phys. Lett. 65, 1924–1926.

    Article  Google Scholar 

  8. Sato, N., Ito, M., Nakayama, J. and Yonehara, T. (1998) Extremely Low Si Etching (<lnm) during Hydrogen Annealing of Silicon-on-Insulator, Ext. Abst. 1998 Int. Conf. SSDM, The Japan Society of Applied Physics, Hiroshima, 298–299.

    Google Scholar 

  9. Edited by Canham, L. (1997) Properties of Porous Si, INSPEC, United Kingdom.

    Google Scholar 

  10. Uhlir, A. (1956) Electrolytic Shaping of Germanium and Silicon, Bell System Tech. J. 35, 333–347.

    Google Scholar 

  11. Sato, N., Sakaguchi, K., Yamagata, K., Fujiyama, Y., and Yonehara, T. (1995) Epitaxial Growth on Porous Si for a New Bond and Etchback Silicon-on-Insulator, J. Electrochem. Soc. 142, 3116–3122.

    Article  Google Scholar 

  12. Sakaguchi, K., Sato, N., Yamagata, K., Fujiyama, Y., and Yonehara, T. (1994) Extremely High selective Etching of Porous Si for Single Etch-Stop Bond-and-Etch-Back Silicon-on-Insulator, Ext. Abst. 1995 Int. Conf. SSDM, The Japan Society of Applied Physics, Yokohama, 259–261.

    Google Scholar 

  13. Sakaguchi K. Sato N. Yamagata K. Fujiyama Y. and Yonehara T. 1995 Extremely High selective Etching of Porous Si for Single Etch-Stop Bond-and-Etch-Back Silicon-on-Insulator Jpn. J. Appl. Phys. 34 842–847

    Article  Google Scholar 

  14. Sakaguchi, K., Yanagita, K., Kurisu, H., Suzuki, H., Ohmi, K. and Yonehara, T. (1999) ELTRAN® by Splitting Porous Si Layers, in P.H.L. Hemment (ed.), Proc. 9th Int. Symp. on Silicon-on-Insulator Tech. and Devices, 99-3, The Electrochemical Society, Seattle, pp.117–121.

    Google Scholar 

  15. Ohmi, K., Sakaguchi, K., Yanagita, K., Kurisu, H., Suzuki, H. and Yonehara, T. (1999) Water Jet Splitting of Thin Porous Si for ELTRAN®, Ext. Abst. 1999 Int. Conf. SSDM, The Japan Society of Applied Physics, Tokyo, 354–355.

    Google Scholar 

  16. Sakaguchi, K., Yanagita, K., Kurisu, H., Suzuki, H., Ohmi, K. and Yonehara, T. (1999) ELTRAN® by Water Jet Splitting in Stress-Controlled Porous Si, Proc. 1999 IEEE Int. SOI Conf., IEEE, Rohnert Park, 110–111.

    Google Scholar 

  17. Herino, R., Perio, A., Barla, K. and Bomchil, G. (1984) Microstructure of Porous Silicon and its Evolution with Temperature”, Mater. Lett. 2, 519–523.

    Article  Google Scholar 

  18. Sato, N., Sakaguchi, K., Yamagata, K., Fujiyama, Y., Nakayama, J. and Yonehara, T. (1995) Advanced Quality in Epitaxial Layer Transfer by Bond and Etch-Back of Porous Si, Ext. Abst. 1995 Int. Conf. SSDM, The Japan Society of Applied Physics, Osaka, pp. 845–847.

    Google Scholar 

  19. Sato, N., Sakaguchi, K., Yamagata, K., Fujiyama, Y., Nakayama, J., and Yonehara, T. (1996) Advanced Quality in Epitaxial Layer Transfer by Bond and Etch-Back of Porous Si, Jpn. J. Appl. Phys. 35, 842–847.

    Article  Google Scholar 

  20. Sato, N., Ishii, S., Matsumura, S., Ito, M., Nakayama, J. and Yonehara, T. (1998) Defect Engineering in Epitaxial Layers over Porous Silicon for ELTRAN® SOI Wafers, Ext. Abst. 1998 Int. Conf. SSDM, The Japan Society of Applied Physics, Hiroshima, pp. 302–303.

    Google Scholar 

  21. Sakaguchi, K., Sato, N., Yamagata, K., Atoji, T., Fujiyama, Y., Nakayama, J. and Yonehara, T. (1997) Current Progress in Epitaxial Layer Transfer (ELTRAN®), IEICE Trans. Electron. E80-C, 378–387.

    Google Scholar 

  22. Yanagita, K., Sakaguchi, K., Kurisu, H., Suzuki, H., Ohmi, K. and Yonehara, T. (1999) An Application of the Water Jet for Splitting Bonded Wafers, Proc. Int. Symp. on New Applications of Water Jet Technology, WJTSJ, Ishinomaki, pp. 137–144.

    Google Scholar 

  23. Yonehara, T. (1998) Latest Technical Trends in ‘ELTRAN’ SOI-Epi Wafers and Future Prospects, Denshi-Zairyo (Electronic Parts and Materials), June edition, pp.4547 (in Japanese).

    Google Scholar 

  24. Nakayama, J. and Yonehara, T. (1999) Boron and Phosphorus Contamination of Bonded SOI Wafers, The Status Quo of Contamination in ULSI Manufacturing, Realize Inc., Tokyo, pp.389–394 (in Japanese).

    Google Scholar 

  25. Ohshima, S., Sutoh, M., Kuroda, T. and Hara, T. (1998) Measurement of Minority Carrier Lifetime for SOI Device Si Layer (II), Ext. Abst. (The 45 th Spring Meeting, 1998), No. 2, The Japan Society of Applied Physics, Tokyo, pp.805 (in Japanese).

    Google Scholar 

  26. Ushiki, T. and Ohmi, T. (2000) Effect of Starting SOI Material Quality on Low-Frequency Noise Characteristics in Partially Depleted Floating-Body SOI MOSFETs, IEEE Electron Device Lett. 21, 610–612.

    Article  Google Scholar 

  27. (1999) SOI: Low-Cost Mass Production, Nikkei Sangyo Shimbun (Nikkei Business News), 24 September 1999, page 1 (in Japanese).

    Google Scholar 

  28. Labunov, V., Bondarenko, V., Glinenko, L., Dorofeev, A. and Tabulina, L. (1986) Heat Treatment Effect on Porous Silicon, Thin Solid Films 137, 123–134.

    Article  Google Scholar 

  29. Sugiyama, H. and Nittono, O. (1989) Annealing Effect on Lattice Distortion in Anodized Porous Silicon Layers, Jpn. J. Appl. Phys. 28, L2013–L2016.

    Article  Google Scholar 

  30. Young, I.M., Beale, M.I.J. and Benjamin, J.D. (1985) X-Ray Double Crystal Diffraction Study of Porous Silicon, Appl. Phys. Lett. 46, pp.1133–1135.

    Article  Google Scholar 

  31. Ito, T., Yasumatsu, T., Watabe, H. and Hiraki, A. (1990) Structure Change of Crystalline Porous Silicon with Chemisorption, Jpn. J. Appl. Phys. 29, L201–L204.

    Article  Google Scholar 

  32. Barla, K., Herino, R., Bomchil, G., Pfister, J.C. and Freund, A. (1984) Determination of Lattice Parameter and Elastic Properties of Porous Silicon by X-Ray Diffraction, J. Crystal Growth 68, 727–732.

    Article  Google Scholar 

  33. Sugiyama, H. and Nittono, O. (1991) Microstructure and Lattice Distortion of Anodized Porous Silicon Layers, Bulletin of the Japan Institute of Metals 30, 268–275 (in Japanese).

    Article  Google Scholar 

  34. Bellet, D., Lamagnere, P., Vincent, A. and Brechet, Y. (1996) Nanoindentation Investigation of the Young’s Modulus of Porous Silicon, J. Appl. Phys. 80, 3772–3776.

    Article  Google Scholar 

  35. Edited by The Water Jet Technology Society of Japan (1993) Water Jet Technology Handbook, Maruzen, Tokyo (in Japanese).

    Google Scholar 

  36. Sato, N. (1999) Recent ELTRAN® Advances, Investigative Research Report on Trends in Multilayer Integration Technology VI, Japan Electronic Industry Development Association, pp.14–28 (in Japanese).

    Google Scholar 

  37. Hashimoto, M. (1998) MOSLSI Epitaxial Reactors, MOS Device Epitaxial Wafer, Realize Inc., Tokyo, pp.46–55 (in Japanese).

    Google Scholar 

  38. Suzuki, E., Ishii, K., Kanematsu, S., Maeda, T., Tsutsumi, T., Nagai, K., Sekigawa, T. and Hiroshima, H. (1999) Highly Suppressed Threshold Voltage Roll-off Characteristics of the 4 nm-Thick SOI N-MOSFETs in the 40-135 nm Gate Length Regime, in P.H.L. Hemment (ed.), Proc. 9th Int. Symp. on Silicon-on-Insulator Tech. and Devices 99-3, The Electrochemical Society, Seattle, pp. 260–265.

    Google Scholar 

  39. Ito, M., Yamagata, K., Miyabayashi, H. and Yonehara, T. (2000) Scalability Potential in ELTRAN® SOI-Epi Wafer™, Proc. 2000 IEEE Int. SOI Conf., IEEE, Massachusetts

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yonehara, T., Sakaguchi, K. (2002). ELTRAN® (SOI-Epi Wafer™) Technology. In: Balestra, F., Nazarov, A., Lysenko, V.S. (eds) Progress in SOI Structures and Devices Operating at Extreme Conditions. NATO Science Series, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0339-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0339-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0576-3

  • Online ISBN: 978-94-010-0339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics