Skip to main content

Functional Mimics of Cu, Zn- Superoxide Dismutase Enzymes

  • Conference paper
Metal-Ligand Interactions

Part of the book series: NATO Science Series ((NAII,volume 116))

Abstract

The purpose of this chapter is to summarize the knowledge on the ability of metal complexes to act as catalysts of the dismutation of superoxide radicals to hydrogen peroxide and dioxygen. The focus will be on the critical evaluation of this knowledge, and to suggest future developments. No attempt is made to be exhaustive in this very large body of literature [14]. This field has grown so vast that discussing or even citing most of the important contributions is virtually impossible; therefore, important aspects might, and will, remain uncovered. Rather, the authors focus particularly on specific copper compounds, for which, to the best of our knowledge, the most recent review was published in 1989 [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wells, W.A. (1999) Getting rid of radicals, Chem. Biol. 6, R345–R346.

    Article  CAS  Google Scholar 

  2. Riley, D.P. (1999) Functional mimics of superoxide dismutase enzymes as therapeutic agents, Chem. Rev. 99, 2573–2587.

    Article  CAS  Google Scholar 

  3. Riley, D.P. (2000) Rational design of synthetic enzymes and their potential utility as human pharmaceuticals: development of manganese(II)-based superoxide dismutase mimics, in G.W. Gokel (ed.) Advances in Supramolecular Chemistry, JAI Press Inc., Stanford, vol. 6, pp. 217–244.

    Google Scholar 

  4. Sorenson, J.R.J. (1989) Copper complexes offer a physiological approach to treatment of chronic disease, Prog. Med. Chem. 26, 437–568.

    Article  CAS  Google Scholar 

  5. Gerschman, R., Gilbert, D.L., Nye, S.W., Dwyer, P. and Fenn, W.O. (1954) Oxygen poisoning and X-irradiation: a mechanism in common, Science 119, 623–626.

    Article  CAS  Google Scholar 

  6. Pauling, L. (1979) the discovery of the superoxide radical, Trends Biochem. Sci. 4, N270–N271.

    Article  CAS  Google Scholar 

  7. Davies, K.J.A. and Ursini, F. (1995) The oxygen paradox, CLEUP University Press, Padua.

    Google Scholar 

  8. Fridovich, I. (1999) Fundamentals aspects of reactive oxygen species, or what’s the matter with oxygen?, Ann. NY Acad. Sci. 893, 13–18.

    Article  CAS  Google Scholar 

  9. Aikens, J. and Dix, T.A. (1993) Hydrodioxyl (perhydroxyl), peroxyl, and hydroxyl radical-initiated lipid peroxidation of large unilamellar vesicles (liposomes): comparative and mechanistic studies, Arch. Biochem. Biophys. 305, 516–525.

    Article  CAS  Google Scholar 

  10. Dix, T.A., Hess, K.M., Medina, M.A., Sullivan, R.W., Tilly, S.L. and Webb, T.L.L. (1996) Mechanism of side-selective DNA nicking by the hydrodioxyl (perhydroxyl) radical, Biochemistry 35, 4579–4583.

    Article  Google Scholar 

  11. Gutteridge, J.M.C. (1994) Biological origin of free radicals, and mechanisms of antioxidant protection, Chem.-Biol. Interact. 91, 133–140.

    Article  CAS  Google Scholar 

  12. Gutteridge, J.M.C., Quinlan, G.J., Swain, J. and Cox, J. (1994) Ferrous ion formation by ferrioxamine prepared from aged desferoxamine: a potential prooxidant property, Free Rad. Biol. Med. 16, 733–739.

    Article  CAS  Google Scholar 

  13. Biaglow, J.E., Manevich, Y., Uckun, F., Held and Kathryn, D. (1997) Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method, Free Rad. Biol. Med. 22, 1129–1138.

    Article  CAS  Google Scholar 

  14. Boveris, A. (1984) Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria, Methods Enzymol. 105, 429–435.

    Article  CAS  Google Scholar 

  15. Turrens, J.F. and Boveris A. (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria, Biochem. J. 191, 421–427.

    CAS  Google Scholar 

  16. Hansford, R.G., Hogue, B.A. and Mildaziene, V. (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age, J. Bioenerg. Biomembr. 424, 51–58.

    Google Scholar 

  17. Richter, C. (1995) in K. Esser and G. M. Martin (eds.), Molecular Aspects of Aging. John Wiley & Sons, Chichester, U.K., pp. 99–108.

    Google Scholar 

  18. Gutteridge, J.M.C. (1983) Antioxidant properties of caeruplasmin towards iron-and copper-dependent oxygen radical formation, FEBS Lett. 157, 37–40.

    Article  CAS  Google Scholar 

  19. Ueda, J.I., Ozawa, T., Miyazaki, M. and Fujiwara, Y. (1994) Activation of hydrogen peroxide by copper(II) complexes with some histidine-containing peptides and their SOD-like activities, J. Inorg. Biochem. 55, 123–130.

    Article  CAS  Google Scholar 

  20. Neve, J., Wasowicz, W., Quivy, D., Parij, N., Van Gossum, A. and Peretz, A. (1995) Lipid peroxidation assessed by serum thiobarbituric acid reactive substance in healthy subjects and in patients with pathologies known to affect trace elements status, Biol. Trace Elem. Res. 47, 147–153.

    Article  CAS  Google Scholar 

  21. Filipe, P.M., Fernandes, A.C. and Manso, C.F. (1995) Effect of zinc on copper-induced and spontaneous lipid peroxidation, Biol. Trace Elem. Res. 47, 51–56.

    Article  CAS  Google Scholar 

  22. Miyajima, H., Takaashi, Y., Sarizawa, M., Kaneko, E. and Gitlin, J.D. (1996) Increased plasma lipid peroxidation in patients with aceruloplasminemia, Free Rad. Biol. Med. 20, 757–760.

    Article  CAS  Google Scholar 

  23. Barnes, J.P. (2000) Chronic obstructive pulmonary disease, N. Engl. J. Med. 343, 269–280.

    Article  CAS  Google Scholar 

  24. Molace, V., Nottet, H.S.M., Clayette, P., Turco, M.C., Muscoli, C, Salvemini, D. and Perno, C.F. (2001) Oxidative stress and neuroAIDS triggers, modulators and novel antioxidants, Trends Neurosci. 24, 411–416.

    Article  Google Scholar 

  25. Fenton, H.J.H. (1894) Oxidation of tartaric acid in the presence of iron, J. Chem. Soc. 65, 899–910.

    Article  CAS  Google Scholar 

  26. Haber, F., and Weiss, J. (1934) The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. London Ser. A 147, 332–351.

    Article  CAS  Google Scholar 

  27. Walling, C. (1975) Fenton’s reagent revisited, Ace. Chem. Res. 8, 125–131.

    Article  CAS  Google Scholar 

  28. Sawyer, D.T., Sobkowiak, A. and Matsushita, T. (1996) Metal [MLx; M = Fe, Cu, Co, Mn]/hydroperoxide-induced activation of dioxygen for the oxygenation of hydrocarbons: oxygenated Fenton chemistry, Acc. Chem. Res. 29, 409–416.

    Article  CAS  Google Scholar 

  29. Yamazaki, I. and Piette, L.H. (1991) EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide, J. Am. Chem. Soc. 113, 7588–7593.

    Article  CAS  Google Scholar 

  30. Yamazaki, I. and Piette, L.H. (1990) ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology, J. Biol. Chem. 265, 13589–13594.

    CAS  Google Scholar 

  31. Goldstein, S. and Czapski, G. (1990) Transition metal ions and oxygen radicals, Intern. Rev. Exp. Path. 31, 133–164.

    CAS  Google Scholar 

  32. McCord, J.M. and Fridovich, I. (1969) Superoxide dismutase: an enzymatic function for erythrocuprein, J. Biol. Chem. 244, 6049–6055.

    CAS  Google Scholar 

  33. Cohen, G. and Hochstein, P. (1963) Glutathione peroxidase: the primary agent for the elimination of hydrogen peroxide in erythrocytes, Biochemistry 6, 1420–1428.

    Article  Google Scholar 

  34. Munday, R. and Winterbourn C.C. (1989) Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defence mechanism, Biochem. Pharmacol. 38, 4349–4352.

    Article  CAS  Google Scholar 

  35. Wilson, R.L. (1983) Free radical repair mechanisms and the interactions of glutathione and vitamins C and E, in O.F. Nygaard and M.G. Simic (eds.) Radioprotectors and Anticarcinogens. Academic Press, New York pp. 1–22.

    Google Scholar 

  36. Schonbaum, G.R. and Chance, B. (1976) Catalase, in P.D. Boyer (ed.) The Enzymes. Academic Press, New York, pp. 363–408.

    Google Scholar 

  37. Fridovich, I. (1997) Superoxide anion radical anion radical (O2~) superoxide dismutases, and related matters, J. Biol. Chem. 272, 18515–18517.

    Article  CAS  Google Scholar 

  38. Warner, B.B., Stuart, L., Gebb, S. and Wispe, J.R. (1996) Redox regulation of manganese superoxide dismutase, Am. J. Physiol. 271, L150–L158.

    CAS  Google Scholar 

  39. Marklund, S.L. (1992) Regulation by cytokine of extracellular superoxide dismutase and other superoxide dismutase isoenzymes in fibroblasts, J. Biol. Chem. 267, 6696–6701.

    CAS  Google Scholar 

  40. Asada, K., Kanematsu, S., Okaka, S. and Hayakawa, T. (1980) Phylogenic distribution of three types of superoxide dismutase in organism and in cell organelles, in J.V. Bannister and H.A.O. Hill (eds.) Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutases, Elsevier/North-Holland, New York, pp. 136–153.

    Google Scholar 

  41. Sakamoto, H. and Tonati, D. (1984) Cloning of the iron superoxide dismutase gene (sodB) in Escherechia coli K12, J. Bacteriol. 159, 418–420.

    CAS  Google Scholar 

  42. Grace, S.C. (1990) Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria, Life Sci. 47, 1875–1886.

    Article  CAS  Google Scholar 

  43. Von Ossowski, I., Hausner, G. and Loewen, P.C. (1993) Molecular evolutionary analysis based on the amino acid sequence of catalase, J. Mol. Evol. 37, 71–76.

    Article  Google Scholar 

  44. Jacob, G.S. and Orme-Johnson, W.H. (1979) Catalase of Neurospora crassa. 1. Induction, purification and physical properties, Biochemistry 18, 2967–2975.

    Article  CAS  Google Scholar 

  45. Magliozzo, R.S. and Marcinkeviciene, J.A. (1997) The role of Mn(II)-peroxidase activity of mycobacterial catalase-peroxidase in activation of the antibiotic isoniazid, J. Biol. Chem. 272, 8867–8870.

    Article  CAS  Google Scholar 

  46. Fridovich, I. (1978) The biology of oxygen radicals, Science 201, 875–880.

    Article  CAS  Google Scholar 

  47. Steinman, H.M. (1982) Superoxide dismutatases: Protein chemistry and structure-function relationships, in L.W. Oberley (ed.) Superoxide Dismutase, CRC Press, Boca Raton, FL, pp. 11–68.

    Google Scholar 

  48. Klugh-Roth, D., Fridovich, I. and Rabani, I. (1973) Pulse radiolytic investigation of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase, J. Am. Chem. Soc. 95, 2786–2790.

    Article  Google Scholar 

  49. Rotilio, G., Bray, R.C. and Fielden, E.M. (1972) A pulse radiolysis study of superoxide dismutase, Biochim. Biophys. Acta 268, 605–609.

    Article  CAS  Google Scholar 

  50. Crapo, J.D., Oury, T.D., Rabouille, C., Slot, J.W. and Chang, L.Y. (1992) Zinc superoxide dismutase is primarily a cytosolic protein in human cells, Proc. Natl. Acad. Sci. USA 89, 10405–10409.

    Article  CAS  Google Scholar 

  51. Oury, T.D., Day, B.J. and Crapo, J.D. (1996) extracellular superoxide dismutase in vessels and airways of humans and baboons, Free Rad. Biol. Med. 20, 957–965.

    Article  CAS  Google Scholar 

  52. Sandstrom, J., Carlsson, L. Marklund, S.L. and Edlund, T. (1992) The heparin-binding domain of extracellular superoxide dismutases C and formation of variants with reduced heparin affinity, J. Biol. Chem. 267, 18205–18209.

    CAS  Google Scholar 

  53. Bertini, I., Mangani, S. and Viezzoli, M.S. (1998) Structure and properties of copper-zinc superoxide dismutases, in L. Sykes (ed.), Advances in Inorganic Chemistry, Academic Press, New York, pp. 127–250.

    Google Scholar 

  54. Banci, L., Bertini, I., Halliwell, R., Luchinat, C. and Viezzoli, M.S. (1989) Water in the active cavity of copper/zinc superoxide dismutase. A water 1H-nuclear-magnetic-relaxation-dispersion study, Eur. J. Biochem. 184, 125–129.

    Article  CAS  Google Scholar 

  55. Banci, L., Carloni, P. and Orioli, P.L. (1994) Molecular dynamics studies on mutants of Cu,Zn superoxide dismutase: the functional role of charged residues in the electrostatic loop VII, Proteins: Struc. Funct. Genet. 18, 216–230.

    Article  CAS  Google Scholar 

  56. Murphy, L.M., Strange, R.W. and Hasnain, S.S. (1997) A critical assessment of the evidence from XAFS and crystallography for the breakage of the imidazolate bridge during catalysis in CuZn superoxide dismutase, Structure 5, 371–379.

    Article  CAS  Google Scholar 

  57. Ellerby, L.M., Cabelli, D.E., Graden, J.A. and Valentine, J.S. (1996) Copper-Zinc Superoxide: why not pH-dependent?, J. Am. Chem. Soc. 118, 6556–6561.

    Article  CAS  Google Scholar 

  58. McCord, J.M. (1986) Superoxide dismutase rationale for use in reperfusion injury and inflammation, J. Free Rad. Biol Med. 2, 307–310.

    Article  CAS  Google Scholar 

  59. Ando, Y., Inoue, M., Hirota, M., Morino, Y. And Araki, S.Y. (1989) Effect of superoxide dismutase on cold-induced brain edema, Brain Res. 477, 286–291.

    Article  CAS  Google Scholar 

  60. Zweer, J.L. (1997) Prevention of reperfusion-induced, free-radical mediated acute endothelial injury by superoxide dismutase as an effective tool to delay/prevent chronic renal allograft failure: a review, Transplant Proc. 29, 2567–2568.

    Article  Google Scholar 

  61. McCord, J.M. (1974) Free radicals and inflammation: protection of synovial fluid by superoxide dismutase, Science 185, 529–531.

    Article  CAS  Google Scholar 

  62. Maxwell, S.R.J. (1995) Prospects for the use of antioxidant therapies, Drugs 49, 345–361.

    Article  CAS  Google Scholar 

  63. Weiss, R.H. and Riley, D.P. (1999) Therapeutic aspects of manganese(II)-based superoxide dismutase mimics, in N.P. Farrell (ed.) Uses of Inorganic Chemistry in Medicine, The Royal Society of Chemistry, Cambridge, pp. 77–92.

    Chapter  Google Scholar 

  64. Kramer, R. (2000) The pharmaceutical potential of manganese-based superoxide dismutase mimics, Angew. Chem. Int. Ed. 39, 4469–4470.

    Article  CAS  Google Scholar 

  65. Day, B.J., Bartinic-Haberle, J. and Crapo, J.D. (1999) Metalloporphyrins are potent inhibitors of lipid peroxidation, Free Rad. Biol. Med. 26, 730–736.

    Article  CAS  Google Scholar 

  66. Bartinic-Haberle, J., Benov, L., Spasojevic, I. and Fridovich, I. (1996) The ortho effect makes manganese(III) meso-tetrakis-N-methylpyridinium-2-ylporphyrin a powerful and potentially useful superoxide dismutase mimic, J. Biol. Chem. 273, 24521–24528.

    Article  Google Scholar 

  67. Faulkner, K.M., Lochev, S.I. and Fridovich, I. (1994) Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo, J. Biol. Chem. 269, 23471–23476.

    CAS  Google Scholar 

  68. Cuzzocrea, S., Zingarelli, B., Costantino, G. and Caputi, A.P. (1999) Beneficial effects of Mn(III) tetrakis-(4-benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimetic, in carragenan pleurisy, Free Rad. Biol. Med. 26, 23–33.

    Article  Google Scholar 

  69. Kitajima, N., Osawa, M., Tamura, N., Moro-oka, Y., Hirano, T., Hirobe, M. and Nagano, T. (1993) Monomeric (benzoato)manganese(II) complexes as manganese superoxide dismutase mimics, Inorg. Chem. 32, 1879–1880.

    Article  CAS  Google Scholar 

  70. Baker, K., Marcus, C.B., Huffman, K., Kruk, H., Malfroy, B. and Doctrow, S.R. (1998) Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemia brain injury, J. Pharm. Exp. Ther. 284, 215–221.

    CAS  Google Scholar 

  71. Rong, Y., Doctrow, S.R., Tocco, G. and Baudry, M. (1999) EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology, Proc. Natl. Acad. Sci. USA 96, 9897–9902.

    Article  CAS  Google Scholar 

  72. Melov, S., Ravenscroft, J., Malik, S., Gill, M.S., Walker, D.W., Clayton, P.E., Wallace, D.C., Malfroy, B., Doctrow, S.R. and Lithgow, G.J. (2000) Extension of life-span with superoxide dismutase/catalase mimetics, Science 289, 1567–1569.

    Article  CAS  Google Scholar 

  73. Salvemini, D., Wong, Z.-Q., Zweier, J.L., Samonilov, A., Macarthur, H., Misko, T.P., Currie, M.G., Cuzzocrea, S., Sikorski, J.A. and Riley, D.P. (1999) A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats, Science 286, 304–306.

    Article  CAS  Google Scholar 

  74. Riley, D.P., Lennon, P.J., Neumann, W.L. and Weiss, R.H. (1997) Toward the rational design of superoxide dismutase mimics: mechanistic studies for the elucidation of substituent effects on the catalytic activity of macrocyclic manganese(II) complexes, J. Am. Chem. Soc. 119, 6522–6528.

    Article  CAS  Google Scholar 

  75. Weiss, R.H., Fretland, D.J., Baron, D.A., Ryan, U.S. and Riley, D.P. (1996) Manganese-based superoxide dismutase mimetics inhibit neutrophil infiltration in vivo, J. Biol. Chem. 271, 26149–26156.

    Article  CAS  Google Scholar 

  76. Baudry, M., Etienne, S., Bruce, A., Palucki, M., Jacobsen, E. and Malfroy, B. (1993) Salen-manganese complexes are superoxide dismutase-mimics, Biochem. Biophys. Res. Commun. 192, 964–968.

    Article  CAS  Google Scholar 

  77. Riley, D.P., Henke, S.L., Lennon, P.J. and Aston, K. (1999) Computer-aided design (CAD) of synzymes: use of molecular mechanics (MM) for the rational design of superoxide dismutase mimics, Inorg. Chem. 38, 1908–1917.

    Article  CAS  Google Scholar 

  78. Halliwell, B., (1975) Superoxide dismutase activity of iron complexes, FEBS Lett. 56, 34–38.

    Article  CAS  Google Scholar 

  79. Solomon, D., Peretz, P. and Faraggi, M. (1982) Chemical properties of water-soluble for porphyrins. 2. The reaction of iron (III) tetrakis (4-N-methylpyridyl)porphyrin with the superoxide radical dioxygen couple, J. Phys. Chem. 86, 1842–1849

    Article  CAS  Google Scholar 

  80. Zhang, D.L., Busch, D.H., Lennon, P.L., Weiss, R.H., Neumann, W.L. and Riley, D.P. (1998) Iron(III) complexes as superoxide dismutase mimics: synthesis, characterization, crystal structure, and superoxide dismutase (SOD) activity of iron(III) complexes containing pentaaza macrocyclic ligands, Inorg. Chem. 37, 956–963.

    Article  CAS  Google Scholar 

  81. Rabani, J., Klug-Roth, D. and Lilie, J. (1973) Pulse radiolytic investigations of the catalyzed disproportionation of peroxy radicals. Aqueous cupric ions, J. Phys. Cem. 77, 1169–1175.

    Article  CAS  Google Scholar 

  82. Weinstein, J. and Bielski, B.H.J. (1980) Reaction of superoxide radicals with copper(II)-histidine complexes, J. Am. Chem. Soc. 102, 4916–4919.

    Article  CAS  Google Scholar 

  83. DeAlvare, L. R., Goda, K. and Kimura, T. (1976) Mechanism of superoxide anion scavenging reaction by bis-(salicylato)-copper (II) complex, Biochem. Biophys. Res. Commun. 69, 687–694.

    Article  CAS  Google Scholar 

  84. O’Young, C.-L. and Lippard, S. J. (1980) Reactions of superoxide anion with copper(II) salicylate complexes, J. Am. Chem. Soc. 102, 4920–4924.

    Article  Google Scholar 

  85. Deuschle, U. and Weser, U. (1984) Reactivity of Cu2(lonazolac)4, a lipophilic copper acetate derivative, Inorg. Chim. Acta 91, 237–242.

    Article  CAS  Google Scholar 

  86. Linss, M. and Weser, U. (1986) The di-Schiff-base of pyridine-2-aldehyde and 1,4-diaminobutane, a flexible copper(I)/copper(II) chelator of significant superoxide dismutase mimetic activity, Inorg. Chim. Acta 125, 117–121.

    Article  CAS  Google Scholar 

  87. Goldstein, S. and Czapski, G. (1986) The role and the mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from the toxicity of O2, Free Rad. Biol. Med. 2, 3–11.

    CAS  Google Scholar 

  88. Linss, M. and Weser, U. (1987) Redox behaviour and stability of active centre analogues of Cu2Zn2-superoxide dismutase, Inorg. Chim. Acta 138, 163–166.

    Article  CAS  Google Scholar 

  89. Czapski, G. and Goldstein, S. (1988) The uniqueness of superoxide dismutase (SOD) — why cannot most copper compounds substitute SOD in vivo?, Free Rad. Res. Comms. 4, 225–229.

    Article  CAS  Google Scholar 

  90. Czapski, G. and Goldstein, S. (1991) Requirements for SOD mimics operating in vitro to work also in vivo, Free Rad. Res. Comms. 12-13, 167–171.

    Article  Google Scholar 

  91. Bonomo, R.P., Bonsignore, F., Conte, E., Impellizzeri, G., Pappalardo, G., Purrello, R. and Rizzarelli, E. (1993) Thermodynamic and spectroscopic characterization and in vitro dioxygen(l-) ion scavenger activity of copper(II) glycyl-L-histidyl-glycyl-L-histidine complexes, J. Chem. Soc. Dalton Trans. 8, 1295–1300.

    Article  Google Scholar 

  92. Costanzo, L.L., De Guidi, G., Giuffrida, S., Rizzarelli, E. and Vecchio, G. (1993) Determination of superoxide dismutase-like activity of copper(II) complexes. Relevance of the speciation for the correct interpretation of in vitro O2 - scavenger activity, J. Inorg. Biochem. 50, 273–281.

    Article  CAS  Google Scholar 

  93. Ueda, J. Sudo, A. Mori, A. and Ozawa, T. (1994) Generation of hydroxyl radicals during dismutation of superoxide by SOD model compounds, Arch. Biochem. Biophys. 215, 185–189.

    Article  Google Scholar 

  94. Condorelli, G., Costanzo, L.L., De Guidi, G., Giuffrida, S., Rizzarelli, E. and Vecchio, G. (1994) Inhibition of photohemolysis by copper(II) complexes with SOD-like activity, J. Inorg. Biochem. 54, 257–263.

    Article  CAS  Google Scholar 

  95. Bonomo, R.P., Conte, E., Marchelli, R., Santoro, A.M. and Tabbì, G. (1994) O2 scavenger properties of copper(II) complexes with diamino-diamide-type ligands, J. Inorg. Biochem. 53, 127–138.

    Article  CAS  Google Scholar 

  96. Pierre, J.-L., Chautemps, P., Refaif, S., Beguin, C., El Marzouki, A., Serratrice, G., Saint-Aman, E. and Rey, P. (1995) Imidazolate-bridged dicopper(II) and copper-zinc complexes of a macrobicyclic ligand (cryptand). A possible model for the chemistry of Cu-Zn-superoxide dismutase, J. Am. Chem. Soc. 117, 1965–1973.

    Article  CAS  Google Scholar 

  97. Bienvenue, E., Chona, S., Lobo-Recio, M.-A., Marzin, C., Pacheco, P., Seta, P. and Tarrago, G. (1995) Structure and superoxide dismutase activity of Ru(II), Cu(II) and Mn(II) macrocyclic complexes, J. Inorg. Biochem. 57, 157–166.

    Article  CAS  Google Scholar 

  98. Muller, J., Felix, K., Maichle, C., Lengfelder, E., Strahle, J. and Weser, U. (1995) Phenyl-substituted copper di Schiff base, a potent Cu2Zn2 superoxide dismutase mimic surviving competitive biochelation, Inorg. Chim. Acta 233, 11–19.

    Article  Google Scholar 

  99. Bonomo, R.P., De Flora, A., Rizzarelli, E., Santoro, A.M., Tabbì, G. and Tonetti, M. (1995) Copper(II) complexes encapsulated in human red blood cells, J. Inorg. Biochem. 59, 773–784.

    Article  CAS  Google Scholar 

  100. Ueda, J., Saito, N. and Ozawa, T. (1996) ESR spin trapping studies on the reactions of hydroperoxides with Cu(II) complex, J. Inorg. Biochem. 64, 197–206.

    Article  CAS  Google Scholar 

  101. Bonomo, R.P., Conte, E., Impellizzeri, G., Pappalardo, G., Purrello, R. and Rizzarelli, E. (1996) Copper(II) complexes with cyclo-(L-aspartyl-L-aspartyl) and cyclo-(L-glutamyl-L-glutamyl) derivatives and their antioxidant properties, J. Chem. Soc. Dalton Trans., 3093–3099.

    Google Scholar 

  102. Bonomo, R.P., Conte, E., De Guidi, G., Maccarrone, G., Rizzarelli, E. and Vecchio, G. (1996) Characterization and superoxide dismutase activity of copper(II) complexes of 6A, 6X-difunctionalized β-cyclodextrins, J. Chem. Soc. Dalton Trans., 4351–4355.

    Google Scholar 

  103. Cao, R., Travieso, N., Fragoso, A., Villalonga, R., Diaz, A., Martinez, M.E., Alpizar, J. and West, D.X. Determination of SOD-like activity of copper(II) complexes with α-amino acid dithiocarbamates, J. Inorg. Biochem. 66, 213–217.

    Google Scholar 

  104. Miche, H., Brumas, V. and Barthon, G. (1997) Copper(II) interactions with non steroidal antinflammatory agents. II. Anthranilic acid as a potential OH-inactivating ligand, J. Inorg. Biochem. 68, 27–38.

    Article  CAS  Google Scholar 

  105. Okuyama, S., Hashimoto, S., Aihara, H., Willingham, W.M. and Sorenson, J.R.J. (1987) Copper complexes have potent analgesic activity and they may activate opioid receptors, in J.R.J. Sorenson (ed), Biology of copper complexes, Humana Press, Clifton, New Jersey, 301–314.

    Book  Google Scholar 

  106. Tabbi, G., Driessen, W.L., Reedijk, J. Bonomo, R.P., Veldman, N. and Spek, A.L. (1997) High superoxide dismutase activity of a novel, intramolecularly imidazolato-bridged asymmetric dicopper(II) species. Design, synthesis, structure and magnetism of copper(II) complexes with a mixed pyrazoleimidazole donor set, Inorg. Chem. 36, 1168–1175.

    Article  CAS  Google Scholar 

  107. Pires dos Santos, M.L., Faljoni-Alario, A., Mangrich, A.S. and da Costa Ferreira, A.M. (1998) Antioxidant and pro-oxidant properties of some di-Schiff base copper(II) complexes, J. Inorg. Biochem. 71, 71–78.

    Article  Google Scholar 

  108. Zhu, H.-L., Zheng, L.-M., Fu, D.-G., Huang, X.-Y., Wu, M.-F. and Tang, W.-X. (1998) The synthesis, structure and SOD-like behaviors of a μ-imidazolatodicopper(II) complex with a binucleating hexaazamacrocycle, J. Inorg. Biochem. 70, 211–218.

    Article  CAS  Google Scholar 

  109. Bonomo, R.P., Impellizzeri, G., Pappalardo, G., Purrello, R., Rizzarelli, E. and Tabbì, G. (1998) Coordinating properties of cyclopeptides. Thermodynamic and spectroscopic study on the formation of copper(II) complexes with cyclo (Gly-His)4 and cyclo (Gly-His-Gly)2 and their superoxide dismutase-like activity, J. Chem. Soc. Dalton Trans., 3851–3857.

    Google Scholar 

  110. Tabbi, G., Nauser, T., Koppenol, W.H. and Reedijk, J. (1998) A pulse radiolysis study of an imidazolato-bridged asymmetric dicopper(II) complex: a structural and functional mimic of superoxide dismutase, Eur. J. Inorg. Chem., 1939–1943.

    Google Scholar 

  111. Durackova, Z., Mendiola, M.A., Sevilla, M.T. and Valent, A. (1999) Thiohydrazone copper(II) complexes. The relationship between redox properties and superoxide dismutase mimetic activity, Biochem. Bioenerg. 48, 109–116.

    Article  CAS  Google Scholar 

  112. Rizzarelli, E. and Vecchio, G. (1999) Metal complexes of functionalized cyclodextrins as enzyme models and chiral receptors, Coord. Chem. Rev. 188, 343–364.

    Article  CAS  Google Scholar 

  113. Ohtsu, H., Shimazaki, Y., Odani, A. and Yamauchi, O. (1999) A novel imidazolate-bridged copper-zinc heterodinuclear complex as a Cu, Zn-SOD active site models, Chem. Commun., 2393–2394.

    Google Scholar 

  114. Kovala-Demertzi, D. (2000) Transition metal complexes of diclofenac with potentially interesting antiinflammatory activity, J. Inorg. Biochem. 79, 153–157.

    Article  CAS  Google Scholar 

  115. Gaubert, S., Bouchaut, M., Brumas, V. and Barton, G. (2000) Copper-ligand interactions and physiological free radical processes. Part 3. Influence of histidine, salicylic acid and anthranilic acid on copper-driven Fenton chemistry in vitro, Free Radie. Res. 32, 451–461.

    Article  CAS  Google Scholar 

  116. Lange, J., Elias, H., Paulus, H., Muller, J. and Weser, U. (2000) Copper(II) and copper(I) complexes with an open-chain N4 Schiff base ligand modeling CuZn superoxide dismutase: structural and spectroscopic characterization and kinetics of electron transfer, Inorg. Chem. 39, 3342–3349.

    Article  CAS  Google Scholar 

  117. Ohtsu, H., Shimazaki, Y., Odani, A., Yamauchi, O., Mori, W., Itoh, S. and Fukuzumi, S. (2000) Synthesis and characterization of imidazolate-bridged dinuclear complexes as active site models of Cu, Zn-SOD, J. Am. Chem. Soc. 122, 5733–5741.

    Article  CAS  Google Scholar 

  118. Ohtsu, H., Fukuzumi, S., Itoh, S., Nagatomo, S., Kitagawa, T., Ogo, S. and Watanabe, Y. (2000) Characterization of imidazolate-bridged Cu(II)-Zn(II) heterodinuclear and Cu(II)-Cu(II) homodinuclear hydroperoxo complexes as reaction intermediate models of Cu,Zn-SOD, Chem. Commun., 1051–1052.

    Google Scholar 

  119. Zhang, J.J. Luo, Q.-H., Long, D.H., Chen, J.-T., Li, F.M. and Liu, A.D. (2000) A superoxide dismutase mimic with high activity: crystal structure, solution equilibria and pulse radiolysis, J. Chem. Soc. Dalton Trans., 1893–1900.

    Google Scholar 

  120. Ohtsu,H., Itoh, S., Nagatomo, S., Kitagawa, T., Ogo, S., Watanabe, Y. and Fukuzumi, S. (2001) Biomimetic studies related to the azide-inhibited Cu, Zn superoxide dismutases, New J. Chem. 25, 696–699.

    Article  Google Scholar 

  121. Pires-Santos, M.L., Bagatin, I.A., Pereira, E.M. and Da Costa Ferriera, A.M. (2001) Redox behaviour and reactivity of some di-Schiff base copper(II) complexes towards reduced oxygen species, J. Chem. Soc. Dalton Trans., 838–844.

    Google Scholar 

  122. Patel, R.N., Kumar, S. and Pandeya, K.B. (2002) ESR., visible and SOD studies of imidazolate bridged Cu2 I,II, CuIIZnII and CuIINiII complexes with pentamethyldiethylenetetriamine as capping ligand: a plausible model for superoxide dismutase, J. Inorg. Biochem. 89, 61.68.

    Article  Google Scholar 

  123. Casolaro, M., Chelli, M., Ginanneschi, M., Laschi, F., Messori, L., Muniz-Miranda, M., Papini, A. M., Kowalik-Jankowska, T. and Kozlowski, H. (2002) Spectroscopic and Potentiometrie study of the SOD mimic system copper(II)/acetyl-L-histidylglycyl-L-histidylglycine, J. Inorg. Biochem. 89, 181–190.

    Article  CAS  Google Scholar 

  124. Pogni, R., Baratto, M.C., Busi, E. and Basosi, R. (1999) EPR and 02·-scavenger activity: Cu(II)-peptide complexes as superoxide dismutase models, J. Inorg. Chem. 73, 157–163.

    CAS  Google Scholar 

  125. Zhou, L. and Sorenson, J.R.J. (1998) Formation of Cu or Fe thiobarbiturate complexes interfere with the determination of malondialdehyde, J. Inorg. Biochem. 73, 157–163.

    Google Scholar 

  126. Beauchamp, C. and Fridovich, I. (1971) Superoxide dismutase: improved assays and an assay applicable in acrylamide gels, Anal. Biochem. 44, 276–287.

    Article  CAS  Google Scholar 

  127. Butler, J., Koppenol, W.H. and Margoliash, E. (1982) Kinetics and mechanism of the reduction of ferricytochrome c by the superoxide anion, J. Biol. Chem. 257, 10747–10750.

    CAS  Google Scholar 

  128. Flohe, L. and Otting, F. (1984) Superoxide dismutase assays, Methods Enzymol. 105, 93–104.

    Article  CAS  Google Scholar 

  129. Goldstein, S., Michel, C., Bors, W., Saran, M. and Czapski, G., (1988) A critical reevaluation of some assay methods for superoxide dismutase activity, Free Rad. Biol. Med. 4, 295–303.

    Article  CAS  Google Scholar 

  130. Goldstein, S. and Czapski, G. (1991) Comparison between different assays for superoxide dismutase-like activity, Free Rad. Res. Commun. 12–13, 5–10.

    Article  Google Scholar 

  131. Riley, D.P., Rivers, W.J. and Weiss, R.H. (1991) Stopped-flow kinetic analysis for monitoring superoxide decay in aqueous systems, Anal. Biochem. 196, 344–349.

    Article  CAS  Google Scholar 

  132. Matheson, M.S. and Dorfman, L.M. (1969) Pulse Radiolysis, MIT Press, Cambridge, pp. 202.

    Google Scholar 

  133. Weiss, R.H., Flickinger, A.G., Rivers, W.J., Hardy, M.M., Aston, K.W., Ryan, U.S. and Riley, D.P. (1993) Evaluation of activity of putative superoxide dismutase mimics. Direct analysis by stopped-flow kinetics, J. Biol. Chem. 268, 23049–23054.

    CAS  Google Scholar 

  134. Strothkamp, K.G. and Lippard, S.J. (1982) Chemistry of the imidazolate-bridged bimetallic center in the copper-zinc superoxide dismutase and its model compounds, Acc. Chem. Res. 15, 318–326.

    Article  CAS  Google Scholar 

  135. Gaertner, A., and Weser, U. (1986) Molecular and functional aspects of superoxide dismutases, Top. Curr. Chem. 132, 1–61.

    Article  CAS  Google Scholar 

  136. Salata, C.A., Youinou, M.T. and Burrows, C.J. (1991) Preparation and structural characterization of dicopper(II) and dinickel(II) imidazolate-bridged macrocyclic Schiff base complexes, Inorg. Chem. 30, 3454–3461.

    Article  CAS  Google Scholar 

  137. Coughlin, P.K., Martin, A.E., Dewan, J.C., Watanabe, E., Bulkowski, J.E., Lehn, J.M. and Lippard, S.J. (1984) Synthesis and structure of the imidazolate-bridged dicopper(II) ion in two binucleating macrocycles, Inorg. Chem. 23, 1004–1009.

    Article  CAS  Google Scholar 

  138. Ngwenya, M.P., Martell, A.E. and Reibenspies, J. (1990) Template synthesis of a novel macrobicyclic ligand and the crystal structure of its unique dinuclear copper(I) complex, Chem. Commun., 1207–1208.

    Google Scholar 

  139. Drew, M.G.B., Marrs, D., Hunter, J. and Nelson, J. (1992) Divergent and convergent forms of a new Schiff base cryptand; X-ray crystallographic and molecular mechanics investigations, J. Chem. soc. Dalton Trans., 11–18.

    Google Scholar 

  140. Lu, Q., Luo, Q.H., Dai, A.B., Zhou, Z.Y. and Hu, G.Z. (1990) The synthesis and crystal structure of imidazolate-bridged [Cu(tren)(im)Zn(tren)](C104)3-MeOH [tren = tris(2-aminoethyl)amine; im = imidazolate], Chem. Commun., 1429–1430.

    Google Scholar 

  141. Mao, Z.W., Yu, K.B., Chen, D., Han, S.Y., Sui, Y.X. and Tang, W.X. (1993) Molecular structure of imidazolate-bridged binuclear zinc complex and its single-crystal ESR spectra doped with bridged copper-zinc complex, Inorg. Chem. 32, 3104–3108.

    Article  CAS  Google Scholar 

  142. O’Young, C.-L., Dewan, J.C., Lilenthal, H.R. and Lippard, S.J. (1978) Electron spin resonance, magnetic, and X-ray crystallographic studies of a binuclear, imidazolate bridged copper(II) complex, [(TMDT)2Cu2(im)(C1O4)2](C1O4), J. Am. Chem. Soc. 100, 7291–7300.

    Article  Google Scholar 

  143. Coughlin, P.K. and Lippard, S.J. (1984) Magnetic, ESR, electrochemical, and Potentiometrie titration studies of the imidazolate-bridged dicopper(II) ion in a binucleating macrocycle, Inorg. Chem. 23, 1446–1451.

    Article  CAS  Google Scholar 

  144. Sato, M., Ikeda, M. and Nakaya, J. (1984) Partial reduction of imidazolate bridged binuclear copper(II) complex with glycylglycine in aqueous solution, Inorg. Chim. Acta 93, L61–L62.

    Article  CAS  Google Scholar 

  145. Klug-Roth, D., and Rabani, J. (1976) Pulse radiolytic studies on reactions of aqueous superoxide radicals with copper(II) complexes, J. Phys. Chem. 80, 588–591.

    Article  CAS  Google Scholar 

  146. Kubota, S. and Yang, J.T. (1984) Bis[cyclo(histidylhistidine)]copper(II) complex that mimicks the active center of superoxide dismutase has its catalytic activity, Proc. Natl. Acad. Sci. USA 81, 3283–3286.

    Article  CAS  Google Scholar 

  147. Bonomo, R.P., Calì, R., Cucinotta, V., Impellizzeri, G. and Rizzarelli, E. (1986) Copper(II) complexes of diastereoisomeric dipeptides in aqueous solution. Effect of side-chain groups on the thermodynamic stereoselectivity, Inorg. Chem. 25, 1641–1646.

    Article  CAS  Google Scholar 

  148. Getzoff, E.D., Cabelli, D.E., Fisher, C.L., Parge, H.E., Viezzoli, M.S., Banci, L. and Hallewell, R.A. (1992) Faster superoxide dismutase mutants designed by enhancing electrostatic guidance, Nature 358, 347–351.

    Article  CAS  Google Scholar 

  149. Szejtli, J. (1998) Introduction and General Overview of Cyclodextrin Chemistry, Chem. Rev. 98, 1743–1754.

    Article  CAS  Google Scholar 

  150. Szejtli, J. (1996) Chemistry, physical and biological properties of cyclodextrins, in J.L. Atwood, J.E.P. Davies, D.D. MacNicol and F. Vögtle (eds), Comprehensive supramolecular chemistry, Pergamon, Oxford, vol. 3, pp.5–40.

    Google Scholar 

  151. Bonfanti, L., Peretto, P., De Marchis, S. and Fasolo, A. (1999) Carnosine-related dipeptides in the mammalian brain, Prog. Neurolbiol. 59, 333–353.

    Article  CAS  Google Scholar 

  152. Boldyrev, A.A. (2000) Problems and perspectives in studying the biological role of carnosine, Biochemistryn (Moscow) 65, 751–756.

    CAS  Google Scholar 

  153. La Mendola, D., Sortino, S., Vecchio, G. and Rizzarelli, E. (2002) Synthesis of new carnosine derivatives of β-cyclodextrin and their OH scavenger ability, Helv. Chim. Acta 85, 1633–1643.

    Article  Google Scholar 

  154. Bonomo, R.P., Conte, E., La Mendola, D., Maccarrone, G., Nicoletti, F., Rizzarelli, E., Sortino, S. and Vecchio, G. (in press) Potentiometrie, spectroscopic and biological activity studies of SOD mimics containing carnosine.

    Google Scholar 

  155. De Loach, J.R. and Sprandel, U. (1985), in A. Hassig (ed) Red Blood Cells as Carriers for Drugs, Karger, Bern.

    Google Scholar 

  156. Renaux, S., Louro, W. and Bemski, G. (1977) Interpretation of copper(II):hemoglobin EPR spectra, J. Magn.Res. 28, 427–431.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bonomo, R. et al. (2003). Functional Mimics of Cu, Zn- Superoxide Dismutase Enzymes. In: Russo, N., Salahub, D.R., Witko, M. (eds) Metal-Ligand Interactions. NATO Science Series, vol 116. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0191-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0191-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1495-6

  • Online ISBN: 978-94-010-0191-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics