Skip to main content

A Measurable “Measurable Choice” Theorem

  • Conference paper
Stochastic Games and Applications

Part of the book series: NATO Science Series ((ASIC,volume 570))

Abstract

We prove here a measurable version of the measurable choice theorem (a.o., basically of Lyapunov’s theorem), in the sense that the measurable selection (the set) can be chosen in a measurable way as a function of the underlying probability measure, of the integral (measure) desired, and of the correspondence itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aumann, R.J. (1965) Integrals of set-valued functions, Journal of Mathematical Analysis and Applications 12, 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourbaki, N. (1958) Eléments de mathematiques, Livre III: Topologie générale. Chapitre IX: Utilisation des nombres réels en topologie générale, 2nd edition, Hermann, Paris.

    Google Scholar 

  3. Debreu, G. (1966) Integration of correspondences, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, pp. 351–372.

    Google Scholar 

  4. Doob, J. (1953) Stochastic Processes, John Wiley, New York.

    MATH  Google Scholar 

  5. Dvoretzky, A., Wald, A. and Wolfowitz, J. (1951) Relations among certain ranges of vector measures, Pacific Journal of Mathematics 1, 59–74.

    MathSciNet  MATH  Google Scholar 

  6. Lyapunov, A. (1940) Sur les fonctions-vecteurs complétement additives, Bull. Acad. Sci. URSS 6, 465–478.

    Google Scholar 

  7. Mertens,J.-F.and Parthasarathy,T.(1987)Equilibria for discounted stochastic games, CORE Discussion Paper 8750,UniversitéCatholique de Louvain, Louvainla-Neuve,Belgium(Chapter 10 in this volume)

    Google Scholar 

  8. Rogers, C.A., Jayne, J.E., Dellacherie, C., Topsoe, F., Hoffman-Jorgensen, J., Martin, D.A., Kechris, A.S. and Stone, A.H. (1980) Analytic Sets, Academic Press, London.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Mertens, JF. (2003). A Measurable “Measurable Choice” Theorem. In: Neyman, A., Sorin, S. (eds) Stochastic Games and Applications. NATO Science Series, vol 570. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0189-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0189-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1493-2

  • Online ISBN: 978-94-010-0189-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics