Skip to main content

The Relationship of Stiffness Changes in Composite Laminates to Fracture-Related Damage Mechanisms

  • Conference paper
Fracture of Composite Materials

Abstract

The monotonic or cyclic loading of continuous fiber laminated composite materials produces various types of micro-damage prior to fracture. Each time one of these micro-events occurs, the local and global stiffness of the material is altered, causing several types of variations in the tensor modulus components of the laminae and laminate. This paper attempts to establish specific relationships between these variations in stiffness and the factors which control the laminate fracture event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Salkind, M. J., “Fatigue of Composite Materials”, Composite Materials: Testing and Design (Second Conference), ASTM STP 497, Philadelphia, 1972.

    Google Scholar 

  2. Nevadunsky, J. J., Lucas, J. JL. and Salkind, M. J., “Early Fatigue Damage Detection in Composite Materials”, J. of Composite Materials, 9: 394, 1975.

    Article  Google Scholar 

  3. Reifsnider, K. L., Stinchcomb, W. W. and O’Brien, T. K., “Frequency Effects on a Stiffness-Based Fatigue Failure Criterion in Flawed Composite Specimens”, in “Fatigue of Filamentary Composite Materials”, K. L. Reifsnider and K. N. Lauraitis, eds., ASTM STP 636, Philadelphia, 1977.

    Chapter  Google Scholar 

  4. Johnson, W. S., “Characterization of Fatigue Damage Mechanism in Continuous Fiber Reinforced Metal Matrix Composites”, Ph.D. Dissertation, Duke University, Durham, 1979.

    Google Scholar 

  5. Stinchcomb, W. W., Reifsnider, K. L. and Williams, R. S., “Critical Factors for Frequency Dependent Fatigue Processes in Composite Materials”, Experimental Mech., 16 (9): 343, 1976.

    Article  Google Scholar 

  6. Hahn, H. T. and Kim, R. Y., “Fatigue Behavior of Composite Laminate”, J. of Comp. Materials, 10: 156, 1976.

    Article  Google Scholar 

  7. O’Brien, T. K., “An Evaluation of Stiffness Reduction as a Damage Parameter and Criterion for Fatigue Failure in Composite Materials”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburq, 1978.

    Google Scholar 

  8. Reifsnider, K. L., Stinchcomb, W. W. and Henneke, E. G., “Defect-Property Relationships in Composite Materials”, AFML-Technical Report 76–81; Part 1, April 1976, Part II, June 1977, Part III, April 1979.

    Google Scholar 

  9. Reifsnider, K. L. and Talug, A., “Analysis of Fatigue Damage in Composite Laminates”, Int. J. Fatigue, pp. 3–11, 1980.

    Google Scholar 

  10. Reifsnider, K. L., “Some Fundamental Aspects of the Fatigue and Fracture Response of Composite Materials”, Proc. 14th Annual Meeting of Society of Engineering Science, November 14–16, 1977, Lehigh University.

    Google Scholar 

  11. Highsmith, A. and Reifsnider, K. L., “Stiffness Reduction Mechanisms in Composite Laminates”, Proc. ASTM Conf. on Damage in Composite Laminates, November 12–14, 1980, Bal Harbour, Florida.

    Google Scholar 

  12. Eshelby, J. D., “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems”, Proc. Roy. Soc. London, Vol. A241, p. 376, 1957.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Rüssel, W. B., “On the Effective Moduli of Composite Materials, Effect of Fiber Length and Geometry at Dilute Concentrations”, Z. Angew. Math. Phys., Vol. 24, p. 581, 1973.

    Article  Google Scholar 

  14. Christensen, R. M., Mechanics of Composite Materials, John Wiley and Sons, New York, p. 90.

    Google Scholar 

  15. Pagano, N. J. and Pipes, R. B., “Some Observations on the Interlaminar Strength of Composite Laminates”, Int. Journal of Mechanical Science, Vol. 15, pp. 679–688, 1973.

    Article  Google Scholar 

  16. O’Brien, T. K., “Characterization of Delamination Onset and Growth in a Composite Laminate”, NASA Technical Meoorandum 81940, January 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this paper

Cite this paper

Reifsnider, K.L., Highsmith, A. (1982). The Relationship of Stiffness Changes in Composite Laminates to Fracture-Related Damage Mechanisms. In: Sih, G.C., Tamuzs, V.P. (eds) Fracture of Composite Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7609-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7609-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7611-5

  • Online ISBN: 978-94-009-7609-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics