Skip to main content

Adaptations to benthic freshwater herbivory

  • Conference paper
Periphyton of Freshwater Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 17))

Abstract

Contrary to periphyton, fresh macrophytes are not ingested by many freshwater invertebrates. Different adaptations that serve to maximize net energy gain in grazers utilizing a food resource which is heterogeneously distributed in space and time are discussed. Data presented support the hypothesis, that aquatic macrophytes often protect themselves against herbivores by producing repellent substances that make them unpalatable. However, some elaborate plant-snail associations suggest these plants in one way or another profit from attracting snails in spite of the grazing damage. Long periods of exposure, lack of alternative food for herbivores, and a vegetative mode of reproduction are factors suggested to enhance the adaptive value of the production of secondary substances by aquatic macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsson, S.A.A., 1966. Dynamics of an isolated population of the crayfish Astacus astacus Linné. Oikos 17: 96–107.

    Article  Google Scholar 

  • Angerilli, N.P.D., 1980. Influences of extracts of freshwater vegetation on the survival and oviposition by Aedes aegypti ( Diptera: Culicidae). Can. Ent. 112: 1249–1252.

    Article  Google Scholar 

  • Baker, J.E., 1975. Protein utilization by larvae of the black carpet beetle, Attagenus megatoma. J. Insect Physiol. 21: 613–621.

    Article  CAS  Google Scholar 

  • Bovbjerg, R.V., 1965. Feeding and dispersal in the snail Stagnicola reflexa ( Basommatophora: Lymnaeidae). Malacologia 2: 199–207.

    Google Scholar 

  • Brown, D.S., 1960. The ingestion and digestion of Cloeon dipterum L. Hydrobiologia 16: 81–96.

    Article  Google Scholar 

  • Brown, K.M., 1982. Resource overlap and competition in pond snails: an experimental analysis. Ecology 63: 412–422.

    Article  Google Scholar 

  • Calow, P., 1974. Some observations on locomotory strategies and their metabolic effects in two species of freshwater gastropods, Ancylus fluviatilis Müll, and Planorbis contortus Linn. Oecologia (Berl.) 16: 149–161.

    Google Scholar 

  • Calow, P., & Calow, L.J., 1975. Cellulase activity and niche separation in freshwater gastropods. Nature 255: 478–480.

    Article  PubMed  CAS  Google Scholar 

  • Cummins, K.W., & Klug, M.J., 1979. Feeding and ecology of stream invertebrates. Ann. Rev. Ecol. Syst. 10: 147–172.

    Article  Google Scholar 

  • Doremus, C.M., & Harman, W.N., 1977. The effects of grazing by physid and planorbid freshwater snails on periphyton. Nautilus 91: 92–96.

    Google Scholar 

  • Eisenberg, R.M., 1966. The regulation of density in a natural population of the pond snail, Lymnaea elodes. Ecology 47: 889–906.

    Article  Google Scholar 

  • Eisenberg, R.M., 1970. The role of food in the regulation of the pond snail, Lymnaea elodes. Ecology 51: 680–684.

    Article  Google Scholar 

  • Feeny, P., 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51: 565–581.

    Article  Google Scholar 

  • Flint, R.W., & Goldman, C.R., 1975. The effects of a benthic grazer on the primary productivity of the littoral zone of lake Tahoe. Limnol. Oceanogr. 20: 935–944.

    Article  CAS  Google Scholar 

  • Fox, L.R., & Macauley, B.J., 1977. Insect grazing on Eucalyptus in response to variation in leaf tannins and nitrogen. Oecologia (Berl.) 29: 145–162.

    Google Scholar 

  • Hart, D.D., 1981. Foraging and resource patchiness; field experiments with a grazing stream insect. Oikos 37: 46–52.

    Article  Google Scholar 

  • Hart, D.D., & Resh, V.H., 1980. Movement patterns and foraging ecology of a stream caddisfly larva. Can. J. Zool. 58: 1174–1185.

    Article  PubMed  CAS  Google Scholar 

  • House, H.L., 1965. Effects of low levels of the nutrient content of a food and of nutrient imbalances on the feeding and the nutrition of a phytophagous larva, Celerio euphorbiae (Linnaeus) ( Lepidoptera: Sphingidae). Can. Ent. 97: 62–68.

    Article  Google Scholar 

  • Hunter, R.D., 1980. Effects of grazing on the quantity and quality of freshwater Aufwuchs. Hydrobiologia 69: 251–259.

    Article  Google Scholar 

  • Hutchinson, G.E., 1981. Thoughts on aquatic insects. BioScience 31: 495–500.

    Google Scholar 

  • Lalonde, R.T., Morris, C.D., Wong, C.F., Gardiner, L.C., Eckert, D.J., King, D.B., & Zimmerman, R.H., 1979. Response of Aedes seriatus larvae to fatty acids of Cladophora. J. Chem. Ecol. 5: 371–381.

    Article  CAS  Google Scholar 

  • Otto, C., 1974. Growth and energetics in a larval population of Potamophylax cingulatus (Steph.) (Trichoptera) in a South Swedish stream. J. Anim. Ecol. 43: 339–361.

    Article  Google Scholar 

  • Otto, C., 1976. Production of Ancylus fluviatilis Müller (Gastropoda) in a South Swedish stream. Pol. Arch. Hydrobiol. 23: 421–429.

    Google Scholar 

  • Otto, C., 1981. Why does duration of flight periods differ in caddisflies? Oikos 37: 383–386.

    Article  Google Scholar 

  • Otto, C., & Svensson, B.S., 1981. How do macrophytes growing in or close to water reduce their consumption by aquatic herbivores? Hydrobiologia 78: 107–112.

    Article  Google Scholar 

  • Owen, D.F., 1977. Are aphids really plant pests? New Scientist 76: 76–77.

    Google Scholar 

  • Patrick, R., 1970. Benthic stream communities. Am. Sci. 58: 546–549.

    Google Scholar 

  • Pennak, R.W., 1973. Some evidence for aquatic macrophytes as repellents for a limnetic species of Daphnia. Int. Revue ges. Hydrobiol. 58: 569–576.

    Article  Google Scholar 

  • Pip, E., & Stewart, J.M., 1976. The dynamics of two aquatic plant-snail associations. Can. J. Zool. 54: 1192–1205.

    Article  Google Scholar 

  • Slansky, F. Jr., & Feeny, P., 1977. Maximization of the rate of oxygen accumulation by larvae of the cabbage butterfly on wild and cultivated foodplants. Ecol. Monogr. 47: 209–228.

    Article  Google Scholar 

  • Soszka, G.J., 1975. Ecological relations between invertebrates and submerged macrophytes in the lake littoral. Ekol. pol. 23: 393–415.

    Google Scholar 

  • Streit, B., 1978. A note on the nutrition of Stylaria lacustris ( Oligochaeta: Naididae). Hydrobiologia 61: 273–276.

    Article  Google Scholar 

  • Streit, B., 1981. Food searching and exploitation by a primary consumer (Ancylus fluviatilis) in a stochastic environment: nonrandom movement patterns. Revue suisse Zool. 88: 887–895.

    Google Scholar 

  • Summer, W.T., & Fisher, S.G., 1979. Periphyton production in Fort River, Massachusetts. Freshw. Biol. 9: 205–212.

    Article  Google Scholar 

  • Taylor, W.E., & Bardner, R., 1968. Leaf injury and food consumption by larvae of Phaedon cochleariae (Coleoptera: Chrysomelidae) and Plutella maculipennis ( Lepidoptera: Plutellidae) feeding on turnip and radish. Ent. exp. appl. 11: 177–184.

    Article  Google Scholar 

  • Ward, J.V., & Dufford, R.G., 1979. Longitudinal and seasonal distribution of macroinvertebrates and epilithic algae in a Colorado springbrook-pond system. Arch. Hydrobiol. 86: 284–321.

    Google Scholar 

  • Warner, J.S., 1976. Choice among food levels by an aquatic grazer (Physa gyrina Say). Behav. Biol. 16: 379–383.

    Article  PubMed  CAS  Google Scholar 

  • Wetzel, R.G., 1969. Excretion of dissolved organic compounds by aquatic macrophytes. Bioscience 19: 539–540.

    Article  CAS  Google Scholar 

  • White, T.C.R., 1978. The importance of a relative shortage of food in animal ecology. Oecologia (Berl.) 33: 71–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robert G. Wetzel

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Dr W. Junk Publishers, The Hague

About this paper

Cite this paper

Otto, C. (1983). Adaptations to benthic freshwater herbivory. In: Wetzel, R.G. (eds) Periphyton of Freshwater Ecosystems. Developments in Hydrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7293-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7293-3_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7295-7

  • Online ISBN: 978-94-009-7293-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics