Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 62))

Abstract

Two- and three-dimensional mobile carrier transport in a semiconductor is simulated in the FIELDAY program using the finite element method. A wide variety of physical effects important in bipolar and field effect transistors can be modeled. The finite element method transforms the continuum description of mobile carrier transport in a semiconductor device to a simulation model at a discrete number of points. Coupled and decoupled algorithms offer two methods of linearizing the differential equations. Direct techniques are used to solve the resulting matrix equations. Pre- and post-processors enable users to rapidly generate new models and analyze results. Specific examples illustrate the flexibility and accuracy of FIELDAY. Projections of future advancements in the program are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes

  1. Cottrell, P. E. and E. M. Buturla. “Application of the Finite Element Method to Semiconductor Transport,” presented at the Asilo-mar Conference on Circuits and Systems, Pacific Grove, CA, (1976).

    Google Scholar 

  2. Slotboom, J. W. and H. C. DeGraaff. “Measurements of Band Gap Narrowing in Si Bipolar Transistors,” Solid State Electron. 19, (1976) 857–862.

    Article  Google Scholar 

  3. Caughey, D. M. and R. E. Thomas. “Carrier Mobilities in Silicon Empirically Related to Doping and Field,” Proc. IEEE 55, (1967) 2192–2193.

    Article  Google Scholar 

  4. Dziewior J. and W. Schmid. “Auger Coefficients for Highly Doped and Excited Silicon,” Appl. Phys. Lett. 31, (1977) 346–348.

    Article  Google Scholar 

  5. Hall, R. N. “Electron-Hole Recombination in Germanium,” Phys. Rev. 87, (1952) 387.

    Article  Google Scholar 

  6. Shockley, W. and W. T. Read. “Statistics of the Recombination of Holes and Electrons,” Phys. Rev. 87 (1952) 835–842.

    Article  MATH  Google Scholar 

  7. Crowell, C. R. and S. M. Sze. “Temperature Dependence of Avalanche Multiplication in Semiconductors,” Appl. Phys. Lett. 9 (1966) 242–244.

    Article  Google Scholar 

  8. Schottky, W. Naturwissenschaften 26 (1938) 843.

    Article  Google Scholar 

  9. Crowell, C. R. and S. M. Sze. “Current Transport in Metal-Semiconductor Barriers,” Solid-State Electron. 9 (1966) 1035.

    Article  Google Scholar 

  10. Buturla, E. M. and P. E. Cottrell. “Two-Dimensional Finite Element Analysis of Semiconductor Phenomena,” presented at the International Conference on Numerical Methods in Electric and Magnetic Field Problems, Santa Margherita, Italy, 1976.

    Google Scholar 

  11. Gummel, H. K. “A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculations,” IEEE Trans. Electron Devices ED-11, (1964) 445–465.

    Google Scholar 

  12. Hachtel, G. D., M. Mack, and R. R. O’Brien. “Semiconductor Device Analysis Via Finite Elements,” presented at the Eighth Asilomar Conference on Circuits and Systems, Pacific Grove, CA, (1974).

    Google Scholar 

  13. Cottrell, P. E. and E. M. Buturla. “Two-dimensional Static and Transient Simulation of Mobile Carrier Transport in a Semiconductor,” Proceedings of the NASECODE I Conference, Boole Press, Dublin, Ireland (1979) 31–64.

    Google Scholar 

  14. O. C. Zienkiewicz and Y. K. Cheung, “Finite Elements in the Solution of Field Problems,” The Engineer, Sept. 1965, pp 507–510.

    Google Scholar 

  15. Archer, J. S. “Consistent Matrix Formulations for Structural Analysis Using Influence Coefficient Techniques,” presented at the First American Institute of Aeronautics and Astronautics Annual Meeting, June 1964, Paper No. 64–488.

    Google Scholar 

  16. Buturla, E. M. and P. E. Cottrell. “Two-Dimensional Finite Element Analysis of Semiconductor Steady-State Transport Equations,” presented at the International Conference on Computational Methods in Nonlinear Mechanics, Austin, TX, 1974.

    Google Scholar 

  17. International Business Machines Program Product, Subroutine Library-Mathematics User’s Guide, Order No. SH12–5300–1, available through IBM branch offices.

    Google Scholar 

  18. George, J. A. and J. Liu. Users Guide for SPARSPAK: Waterloo Sparse Linear Equations Package, Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada (1979).

    Google Scholar 

  19. George, J. A. and J. Liu. “Algorithms for Matrix Partitioning and the Numerical Solution of Finite Element Systems,” SIAM Journal of Numerical Analysis, Vol. 15, (1978) 297.

    Article  MathSciNet  MATH  Google Scholar 

  20. George, J. A. and J. Liu. “An Automatic Nested Dissection Algorithm for Irregular Finite Element Problems,” SIAM Journal of Numerical Analysis, Vol. 15 (1978) 1053.

    Article  MathSciNet  MATH  Google Scholar 

  21. Buturla, E. M. and P. E. Cottrell. “Simulation of Semiconductor Transport Equations Using Coupled and Decoupled Solution Techniques,” Solid-State Electron. 23, (1980) 331–334.

    Article  Google Scholar 

  22. Buturla, E. M., P. E. Cottrell, B. M. Grossman, M. B. Lawlor, C. T. McMullen, and K. A. Salsburg. “Three Dimensional Simulation of Semiconductor Devices,” IEEE International Solid State Circuits Conference Digest of Technical Papers, San Francisco, (Feb. 1980) 76–77.

    Google Scholar 

  23. Cottrell, P. E. and E. M. Buturla. “Steady State Analysis of Field Effect Transistors via the Finite Element Method,” Digest of the IEEE International Electron Devices Meeting, Washington, DC, (Dec. 1975), 51–54.

    Google Scholar 

  24. Noble, W. P. and P. E. Cottrell. “Narrow Channel Effects in Insulated Gate Field Effect Transistors,” Digest of the IEEE International Electron Devices Meeting, Washington, DC, (Dec. 1976), 582–586.

    Google Scholar 

  25. Gaensslen, F. H. “Geometry Effects of Small MOSFET Devices,” IBM J. Res. Develop. 23, (1979) 682–688.

    Article  Google Scholar 

  26. Kotecha, H. and W. P. Noble. “Interaction of IGFET Field Design with Narrow Channel Device Operation,” Digest of the IEEE International Electron Devices Meeting, Washington, DC, (Dec. 1980), 724–727.

    Google Scholar 

  27. Larsen, Richard A. “A Silicon and Aluminum Dynamic Memory Technology,” IBM J. Res. Develop. 24, (1980) 268–282.

    Article  Google Scholar 

  28. Barnes, J.J. and D.N. Shabde, and F.B. Jenne. “The Buried-Source VMOS Dynamic RAM Device,” Digest of the IEEE International Electron Devices Meeting, Washington, DC, (Dec. 1977), 272–275.

    Google Scholar 

  29. Hoffman K. and R. Losehand. “VMOS Technology Applied to Dynamic RAMs,” IEEE J. Solid State Circuits SC-13, (1978) 617–622.

    Article  Google Scholar 

  30. Cottrell, P.E. and E.M. Buturla. “Threshold and Subthreshold Characteristics of VMOS FETs via a Two-dimensional Finite Element Model,” presented at the Device Research Conference, June 1978, abstract published in IEEE Trans. Electron Devices ED-25, (1978) 1346.

    Google Scholar 

  31. Eardley, D. IBM General Technology Division laboratory, East Fishkill, NY, private communication.

    Google Scholar 

  32. Buturla, E.M., P.E. Cottrell, B.M. Grossman, C.T. McMullen, and K.A. Salsburg. “Three-Dimensional Transient Finite Element Analysis of the Semiconductor Transport Equations,” Proceedings of the NASECODE II Conference, Boole Press, Dublin, Ireland, (June 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Salsburg, K.A., Cottrell, P.E., Buturla, E.M. (1983). Fielday — Finite Element Device Analysis. In: Antognetti, P., Antoniadis, D.A., Dutton, R.W., Oldham, W.G. (eds) Process and Device Simulation for MOS-VLSI Circuits. NATO ASI Series, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6842-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6842-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6844-8

  • Online ISBN: 978-94-009-6842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics