Skip to main content

Adaptation in perennial coastal plants — with particular reference to heritable variation in Puccinellia maritima and Ammophila arenaria

  • Chapter
Ecology of coastal vegetation

Part of the book series: Advances in vegetation science ((AIVS,volume 6))

Abstract

Perennial species invading the early stages of primary successions face constant, and often rapid, change in their biotic and abiotic environment. The relative abilities of different species to adapt to this change is reflected in the zonation patterns which characterize coastal vegetation. Variation in those species with wide ecological amplitudes, particularly in populations near the boundary of the realized niche, is likely to be particularly revealing.

The pattern of heritable variation in Puccinellia maritima on salt marshes indicates directional selection for traits increasing plant vigour and ‘competitive ability’; presumably the effect of increasing plant density. Adaptation is by both genetic differentiation and phenotypic flexibility, the former being evident in adjacent grazed and ungrazed marshes and the latter in a mosaic of tall and short vegetation types. By contrast variation in Ammophila arenaria on dunes exhibits high levels of phenotypic flexibility, growth in a range of environments indicating that plants from fore-dune populations are higher ‘responders’ than those from mature dunes.

Among the implications of these results, and by comparison with other species, is the fact that, ironically, niche expansion for some salt marsh perennials may require the evolution of an annual strategy, and that a Darwinian selection model may help to explain variation in Ammophila’s apparent vigour in dunes of different age.

Nomenclature follows Tutin et al.: Flora Europaea (1964–1980).

I am grateful to several colleagues and students, past and present, who have helped with the studies of Puccinellia and Ammophila and I am particularly indebted in this respect to Richard Scott.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, R. J., 1976. Variation within common groundsel, Senecio vulgaris L. II. Local differences within cliff populations on Puffin Island. New Phytol. 76: 165–172.

    Article  Google Scholar 

  • Adam, P., 1981. The vegetation of British salt marshes. New Phytol. 88: 143–196.

    Article  Google Scholar 

  • Barbour, M. G., 1970. Is any angiosperm an obligate halophyte? Am. Midi. Nat. 84: 105–120.

    Article  Google Scholar 

  • Barbour, M. G., 1978. The effect of competition and salinity on the growth of a salt marsh plant species. Oecologia 37: 93 99.

    Google Scholar 

  • Begon, M. & Mortimer, M., 1981. Population Ecology. Black-well Scientific Publications, Oxford.

    Google Scholar 

  • Bradshaw, A. D., 1965. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115–155.

    Google Scholar 

  • Bradshaw, A. D., 1973. Environment and phenotypic plasticity. In: Basic Mechanisms in Plant Morphogenesis. Brookhaven Symposia in Biology 25, pp. 75–94.

    Google Scholar 

  • Breese, E. L., 1969. The measurement and significance of genotype X environment interactions in grasses. Heredity 24: 27–44.

    Article  Google Scholar 

  • Breese, E. L., Hayward, M. D. &Thomas, A. C., 1965. Somatic selection in perennial ryegrass. Heredity 20: 367–369.

    Google Scholar 

  • Cavers, P. B. & Harper, J. L., 1967. The comparative biology of closely related species living in the same area. IX. Rumex: the nature of adaptation to a sea-shore habitat. J. Ecol. 55: 7382.

    Google Scholar 

  • Chapman, V. J., 1974. Salt Marshes and Salt Deserts of the World, 2nd ed. Cramer, Lehre.

    Google Scholar 

  • Eldred, R. A. & Maun, M. A., 1982. A multivariate approach to the problem of decline in vigour of Ammophila. Can. J. Bot. 60: 1371–1380.

    Google Scholar 

  • Finlay, K. W. & Wilkinson, G. N., 1963. The analysis of adaptation in a plant breeding programme. Aust J. Agric. Res. 14: 742–754.

    Google Scholar 

  • Finlay, K. W. & Wilkinson, G. N., 1963. The analysis of adaptation in a plant breeding programme. Aust J. Agric. Res. 14: 742–754.

    Google Scholar 

  • Gimingham, C. H., 1964. Maritime and sub-maritime communities. In: J. H. Burnett (ed.), The Vegetation of Scotland, pp. 67–142. Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Gray, A. J., 1972. The ecology of Morecambe Bay. V. The saltmarshes of Morecambe Bay. J. App. Ecol. 9: 207–220.

    Google Scholar 

  • Gray, A. J., 1974. The genecology of salt marsh plants. ydr.Bull. 8: 152–165.

    Google Scholar 

  • Gray, A. J., 1977. Reclaimed land. In: R. S. K. Barnes(ed.),The Coastline, pp. 253–270. Wiley & Sons, London.

    Google Scholar 

  • Gray, A. J., 1981. Habitat-correlated variation in phenotypic plasticity in Marram grass, Ammophila arenaria, and its implications for sand dune stabilisation. J. Sports Turf Res. Inst. 57: 5–6.

    Google Scholar 

  • Gray, A. J., Parsell, R. J. & Scott, R., 1979. The genetic structure of plant populations in relation to the development of salt marshes. In: R. L. Jefferies& A. J. Davy (eds.), Ecological Processes in Coastal Environments, pp. 43–64. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Hannon, N. J. & Bradshaw, A. D., 1968. Evolution of salt tolerance in two coexisting species of grass. Nature 220: 1342–1343.

    Article  Google Scholar 

  • Hayward, M. J., 1970. Selection and survival in Lolium perenne. Heredity 25: 441–447.

    Article  Google Scholar 

  • Gray, A. J. & Scott, R., 1980. A genecological study of Puccinellia maritima (Huds.) Parl. I. Variation estimated from single-plant samples from British populations. New Phytol. 85: 89–107.

    Article  Google Scholar 

  • Grime, J. P., 1979. Plant Strategies and Vegetation Processes. Wiley & Sons, Chichester.

    Google Scholar 

  • Hannon, N. J. & Bradshaw, A. D., 1968. Evolution of salt tolerance in two coexisting species of grass. Nature 220: 1342–1343.

    Article  Google Scholar 

  • Harper, J. L., 1982. After description. In: E. I. Newman (ed.), The Plant Community as a Working Mechanism, pp. 11–26. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Hayward, M. J., 1970. Selection and survival in Lolium perenne. Heredity 25: 441–447.

    Article  Google Scholar 

  • Horn, H. S., 1978. Optimal tactics of reproduction and life-history. In: J. R. Krebs & N. B. Davies (eds.), Behavioural Ecology: An Evolutionary Approach, pp. 411–429. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Huiskes, A. H. L., 1977. The natural establishment of Ammophila arenaria from seed. Oikos 29: 133–136.

    Article  Google Scholar 

  • Huiskes, A. H. L., Soelen, J. van & Markusse, M. M., 1985. Field studies on the variability of population of Aster tripolium L. in relation to salt-marsh zonation. In W. G. Beeftink, J. Rozema & A. H. L. Huiskes (eds.), Ecology of Coastal Vegetation. Vegetatio 61/62: 163–170.

    Google Scholar 

  • Hume, L. & Cavers, P. B., 1982. Geographic variation in a widespread perennial weed, Rumex crispus. The relative amounts of genetic and environmentally induced variation among populations. Can. J. Bot. 60: 1928–1937.

    Article  Google Scholar 

  • Humphreys, M. 0., 1982. The genetic basis of tolerance to salt spray in populations of Festuca rubra L. New Phytol. 91: 287–296.

    Article  Google Scholar 

  • Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harb. Symp. on Quantitative Biol. 22: 415–27.

    Google Scholar 

  • Hutchinson, G. E., 1957. Concluding remarks. Cold Spring Harb. Symp. on Quantitative Biol. 22: 415–27.

    Google Scholar 

  • Jefferies, R. L., 1972. Aspects of salt-marsh ecology with particular reference to inorganic plant nutrition. In: R. S. K. Barnes & J. Green (eds.), The Estuarine Environment, pp. 41–85. Applied Science Publishers, London.

    Google Scholar 

  • Jefferies, R. L., 1977. Growth responses of coastal halophytes to inorganic nitrogen. J. Ecol. 65: 847–865.

    Article  Google Scholar 

  • Jefferies, R. L., Davy, A. J. & Rudmik, T., 1979. The growth strategies of coastal halophytes. In: R. L. Jefferies & A. J. Davy (eds.), Ecological Processes in Coastal Environments, pp. 243 268. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Jefferies, R. L. & Perkins, N., 1977. The effects on the vegetation of the additions of inorganic nutrients to salt marsh soils at Stiffkey, Norfolk. J. Ecol. 65: 867–882.

    Article  CAS  Google Scholar 

  • Laing, C. C., 1967. The ecology of Ammophila breviligulata. II. Genetic change as a factor in population decline on stable dunes. Am. Midi. 77: 495–500.

    Article  Google Scholar 

  • Levins, R., 1968. Evolution in Changing Environments. Prin-ceton University Press, Princeton, New Jersey.

    Google Scholar 

  • Lewontin, R. C., 1961. Evolution and the theory of games. J. ‘Iheoret. Biol. 1: 382–403.

    Article  CAS  Google Scholar 

  • Marshall, J. K., 1965. Corynephorus canescens (L.) P. Beauv. as a model for the Ammophila problem. J. Ecol. 53: 447–463.

    Article  Google Scholar 

  • Nicholls, M. K. & McNeilly, T., 1979. Sensitivity of rooting and tolerance to copper in Agrostis tenuis Sibth. New Phytol. 83: 653–664.

    Article  CAS  Google Scholar 

  • Rabotnov, T. A., 1978. On coenopopulations of plant reproducing by seeds. In: A. H. J. Freysen &J. W. Woldendorp (eds.), Structure and Functioning of Plant Populations: North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Ranwell, D. S., 1972. Ecology of Salt Marshes and Sand Dunes. Chapman & Hall, London.

    Google Scholar 

  • Rozema, J., 1979. Population dynamics and ecophysiological adaptations of some coastal members of the Juncaceae and Graminacae. In: R. L. Jefferies & A. J. Davy (eds.), Ecological Processes in Coastal Environments, pp. 229–242. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Rozema, J., Rozema-Dijst, E., Freijsen, A. H. J. & Huber, J. J. L., 1978. Population differentiation within Festuca ru-bra with regard to soil salinity and soil water. Oecologia 34: 329–341.

    Article  Google Scholar 

  • Scott. R. & Gray, A. J., 1976. Chromosome number of Puccinellia maritima (Huds.) Part. in the British Isles. Watsonia 17: 53–57.

    Google Scholar 

  • Silander, J. A., 1979. Microevolution and clone structure in Spartina patens. Science 203: 658–660.

    Article  PubMed  CAS  Google Scholar 

  • Silander, J. A. & Antonovics, J., 1979. The genetic basis of the ecological amplitude of Spartina patens. I. Morphometric and physiological traits. Evolution 33: 1114–1127.

    Article  Google Scholar 

  • Southwood, T. R. E., 1977. Habitat, the template for ecological strategies ? J. Animal Ecol., 46: 337–365.

    Google Scholar 

  • Tiku, B. L. & Snaydon, R. W., 1977. Salinity tolerance within the grass species Agrostis stolonifera L. Plant Soil 35: 421–431.

    Article  Google Scholar 

  • Tutin, T. G., Heywood, V. H., Burges, N. A., Valentine, D. H., Walters, S. M. & Webb, D. A., 1964–1980. Flora Europaea. 5 Vols. University Press, Cambridge.

    Google Scholar 

  • Venables, A. V. & Wilkins, D. A., 1978. Salt tolerance in pasture grasses. New Phytol. 80: 613 622.

    Google Scholar 

  • Waddington, C. H., 1961. Genetic assimilation. Adv. Genet. 10: 257–293.

    Google Scholar 

  • Waisel, Y., 1972. Biology of Halophytes. Academic Press, New York.

    Google Scholar 

  • Wallace, B., 1959. Studies of the relative fitness of experimental populations of Drosophila melanogaster. Am. Nat. 93: 295–314.

    Article  Google Scholar 

  • Wallen, B., 1980. Changes in structure and function of Ammophila during primary succession. Oikos 34: 227–238.

    Article  Google Scholar 

  • Wilson, E. O., 1965. The challenge from related species. In H. G. Baker & G. L. Stebbins (eds.), The Genetics of Colonising Species, pp. 7 24. Academic Press, New York.

    Google Scholar 

  • Wu, L., 1981. The potential for evolution of salinity tolerance in Agrostis stolonifera L. and Agrostis tenuis Sibth. New Phytol. 89: 471–486.

    Article  Google Scholar 

  • Wu, K. K. & Jain, S. K., 1978. Genetic and plastic responses in geographic differentiation of Bromus rubens populations. Can. J. Bot. 56: 873–879.

    Article  Google Scholar 

  • Yates, F. & Cochran, W. G., 1938. The analysis of groups of experiments. J. Agric. Sci. Camb. 28: 556–580.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Gray, A.J. (1985). Adaptation in perennial coastal plants — with particular reference to heritable variation in Puccinellia maritima and Ammophila arenaria . In: Beeftink, W.G., Rozema, J., Huiskes, A.H.L. (eds) Ecology of coastal vegetation. Advances in vegetation science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5524-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5524-0_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8938-8

  • Online ISBN: 978-94-009-5524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics