Skip to main content

Polymetamorphism in the Adirondacks: Wollastonite at Contacts of Shallowly Intruded Anorthosite

  • Chapter
The Deep Proterozoic Crust in the North Atlantic Provinces

Part of the book series: NATO ASI Series ((ASIC,volume 158))

Abstract

Two distinct metamorphic events can be resolved in the N.E. Adirondacks through study of phase equilibria and stable isotoge geochemistry at occurrences of wollastonite. Low values of δ180 (to -1.3) at the wollastonite mines near Willsboro indicate that large amounts of heated meteoric water were involved in the formation of skarns at anorthosite contacts. This process is only consistent with magmatic intrusion and crystallization of anorthosite at relatively shallow depths (<10 km). Likewise, the formation of wollastonite, monticellite, and akermanite in a marble xenolith, surrounded by anorthosite at Cascade Slide, can best be explained by low pressure decarbonation reactions. Alternate theories of high pressure genesis for these minerals require large amounts of fluid infiltration to dilute CO2. Sharp gradients in δ180 across this xenolith prove that H2O could not have been such a diluent and no evidence exists for the presence of large amounts of any other fluid component. This evidence of shallow contact metamorphism is in marked contrast to the depths indicated by mineral barometers for the ensuing granulite facies metamorphism (23–26 km). These results, in conjunction with recent Sm-Nd geochronology, support shallow (<10 km) anorthosite intrusion and contact metamorphism at ~1.3 by. followed by deep granulite facies metamorphism at 1.1–1.0 by.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greenwood, H.J. (1967). Wollastonite: stability in H2O-CO2 mixtures and occurrence in a contact-metamorphic aureole near Salmo, British Columbia, Canada. Am. Mineral. 52, 1669–1680.

    Google Scholar 

  2. Isachsen, Y.W., McLelland, J., Whitney, P.R. (1975). Anorthosite contact relations in the Adirondacks and their implications for geological history. Geol. Soc. Am. Abstr. w. Prog. 7, 78–79.

    Google Scholar 

  3. Whitney, P.R. (1978). The significance of garnet “isograds” In granulite facies rocks of the Adirondacks. Geol. Surv. Can. Pap. 78-10, 357–366.

    Google Scholar 

  4. Tracy, R.J., Jaffe, H.W., Robinson, P. (1978). Monticellite marble at Cascade Mt., Adirondack Mountains, N.Y. Am. Mineral. 63, 991–999.

    Google Scholar 

  5. McLelland, J., Isachsen, Y. (1980). Structural synthesis of the southern and central Adirondacks: A model for the Adirondacks as a whole and plate-tectonic interpretations. Geol. Soc. Am. Bull. 91, 68–72, 208–292.

    Article  Google Scholar 

  6. Valley, J.W., Essene, E.J. (1980). Akermanite in the Cascade Slide Xenolith, and its significance for regional metamorphism in the Adirondacks. Contr. Min. Pet. 74, 143–152.

    Article  Google Scholar 

  7. Valley, J.W., O’Neil, J.R. (1982). Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite. Nature 300, 497–500.

    Article  Google Scholar 

  8. Whitney, P.R. (1983). A three-stage model for the tectonic history of the Adirondack Region, N.Y. New England Geol. 5, 61–72.

    Google Scholar 

  9. Whitney, P.R., McLelland, J.M. (1983). Origin of biotite-hornblende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack Region, N.Y. Contr. Min. Pet. 82, 34–41.

    Article  Google Scholar 

  10. Valley, J.W., O’Neil, J.R. (1984). Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence. Contr. Min. Pet. 85, 158–173.

    Article  Google Scholar 

  11. Bohlen, SR., Valley JW Essene, EJ (1985). Metamorphism in the Adirondacks. I. Pressure and temperature. J. Petrol., in press.

    Google Scholar 

  12. Ashwal, L.D., Wooden, J.L. (1983). Sr and Nd isotope geochronology, geologic history, and origin of the Adirondack Anorthosite. Geochim. Cosmochim. Acta 47, 1875–1885.

    Article  Google Scholar 

  13. Basu, A.R., Pettingill, H.S. (1983). Origin and age of Adirondack anorthosites reevaluated with Nd isotopes. Geology 11, 514–518.

    Article  Google Scholar 

  14. Bohlen, S.R., Essene, E.J. (1978). Igneous pyroxenes from metamorphosed anorthosite massifs. Contr. Min. Pet. 65, 433–442.

    Article  Google Scholar 

  15. Ollila, P.W., Jaffe, H.W. and Jaffe, E.B. (1984). Iron-rich inverted pigeonite: evidence for the deep emplacement of the Adirondack Anorthosite Massif. Geol. Soc. Am. Abstr. w. Prog., 54.

    Google Scholar 

  16. Lindsley, D.H. (1983). Pyroxene thermometry. Am. Mineral. 68, 477–493.

    Google Scholar 

  17. Valley, J.W., Essene, E.J. (1980). Calc-silicate reactions In Adirondack marble: the role of fluids and solid solution. Geol. Soc. Am. Bull. 91, 114–117, 720–815.

    Article  Google Scholar 

  18. Putman, G.W. (1958). Geology of some wollastonite deposits in the Eastern Adirondacks, New York. MS thesis, Penn. State Univ., 105 p.

    Google Scholar 

  19. Buddington, A.F. (1939). Adirondack igneous rocks and their metamorphism. Geol. Soc. Am. Mem. 7, 354 p.

    Google Scholar 

  20. French, B.M. (1966). Some geological implications of equilibrium between graphite and a C-O-H gas phase at high temperatures and pressures. Rev. in Geophys. 4, 223–253.

    Article  Google Scholar 

  21. Valley, J.W., Peterson, E.U., Essene, E.J., Bowman, J.R. (1982). Fluorphlogopite and fluortremolite in Adirondack marbles and calculated C-O-H-F fluid compositions. Am. Mineral. 67, 545–557.

    Google Scholar 

  22. Fyfe, W.S. (1973). The granulite facies, partial melting, and the Archean crust. Phil. Trans. Roy. Soc. Lond. 273A, 457–461.

    Google Scholar 

  23. Newton, R.C., Smith, J.V., Windley, B.F. (1980). Carbonic metamorphism, granulites, and crustal growth. Nature 288, 45–50.

    Article  Google Scholar 

  24. Hoschek, G. (1976). Zur Stabilitat von Clintonite im system Ca0-Mg0-Al203-Si02-H20-C02. Fort, der Min., 39–40.

    Google Scholar 

  25. Taylor, H.P. (1969). Oxygen isotope studies of anorthosites with particular reference to bodies in the Adirondack Mts., N.Y. N.Y. State and Sci. Ser. Mem. 18, 111–134.

    Google Scholar 

  26. Veizer, J., Hoefs, J. (1976). The nature of 180/160 and 13C/12C secular trends in sedimentary carbonate rocks. Geochim. Cosmochim. Acta 40, 1387–1395.

    Article  Google Scholar 

  27. Emslie, R.F. (1978). Anorthosite massifs, rapikivi granites, and late Proterozoic rifting of North America. Precamb. Res. 7, 61–98.

    Article  Google Scholar 

  28. Morse, S.A. (1982). A partisan review of Proterozoic anorthosites. Am. Mineral. 67, 1087–1100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Valley, J.W. (1985). Polymetamorphism in the Adirondacks: Wollastonite at Contacts of Shallowly Intruded Anorthosite. In: Tobi, A.C., Touret, J.L.R. (eds) The Deep Proterozoic Crust in the North Atlantic Provinces. NATO ASI Series, vol 158. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5450-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5450-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8907-4

  • Online ISBN: 978-94-009-5450-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics