Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 94))

Abstract

A state-of-the-art review is given on the application of both linear and non-linear elastic fracture mechanics parameters for characterising the fracture behaviour of cementitious composites. Experimental techniques for the measurement of these fracture parameters are discussed and critically assessed in relation to fibre cements, mortars and concretes. It is shown that the fracture behaviour is best described by the R-curve which is believed to be a material property provided that certain size requirements are met. Theoretical models for the prediction of R-curves are considered. Some recent experimental results on fracture measurements of asbestos and cellulose fibre cements are also described. In particular, the effects of specimen size, geometry and environment on the R-curve are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Knott, J.F. Fundamentals of Fracture Mechanics. ( London: Butterworths, 1973 ).

    Google Scholar 

  2. Kinloch A.J. and R.J. Young. Fracture Behaviour of Polymers. ( London: Applied Science Publishers, 1983 ).

    Google Scholar 

  3. Lawn, B.R. and T.R. Wilshaw. Fracture of Brittle Solids. ( London: Cambridge University Press, 1975 ).

    Google Scholar 

  4. Begley, J.A. and J.D. Landes. The J-integral as a Fracture Criterion. ASTM STP 514 (1972) 1–20.

    Google Scholar 

  5. Wells, A.A. Application of Fracture Mechanics at and Beyond General Yielding. British Welding Journal 10 (1963) 563–570.

    Google Scholar 

  6. Cotterell, B. and Y.W. Mai. Plane Stress Ductile Fracture, in D. Francois, ed., Advances in Fracture Research ( London: Pergamon Press, 1981 ) Vol. 4, pp. 1683–1694.

    Google Scholar 

  7. Pascoe, K.J. Private communication, November, 1979.

    Google Scholar 

  8. Higgins, D.D. and J.E. Bailey. A Microstructural Investigation of the Failure Behaviour of Cement Paste, in Proc. Conf. on Hydraulic Cement Pastes, Sheffield University (Cement and Concrete Association, U.K., 1976 ) pp. 283–296.

    Google Scholar 

  9. Petersson, P.E. Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials. Doctoral Dissertation, December, 1981. Lund Institute of Technology, Sweden.

    Google Scholar 

  10. Bazant, Z.P. and B.H. Oh. Crack Band Theory for Fracture of Concrete. Materials and Structures 16 (1983) 155–177.

    Google Scholar 

  11. Swamy, R.N. Fracture Mechanics Applied to Concrete, in F.D. Lydon, ed., Developments in Concrete Technology -1 ( London: Applied Science Publishers, 1979 ), pp. 221–281.

    Google Scholar 

  12. Carpinteri, A. Application of Fracture Mechanics to Concrete Structures. Journal of the Structures Division, Proc. ASCE, 108 (1982) 833–848.

    Google Scholar 

  13. Saouma, V.E. and A.R. Ingraffea. Fracture Toughness of Concrete: KIC Revisited. Journal of the Engineering Mechanics Division, Proc. ASCE, 108 (1982) 1152–1166.

    Google Scholar 

  14. Kesler, C.E., D.J. Naus and J.L. Lott. Fracture Mechanics — Its Applicability to Concrete. in Proc. Int. Conf. on Mechanical Behaviour of Materials, Japan, Vol. 4, 1972, pp. 113–124.

    Google Scholar 

  15. Swartz, S.E., K.K. Hu, M. Fartash and C.M.J. Huang. Stress Intensity Factor for Plain Concrete in Bending — Prenotched Versus Precracked Beams. Experimental Mechanics 22 (1982) 412–417.

    Article  Google Scholar 

  16. Naaman, A.E., A.S. Argon and F. Moavenzadeh. A Fracture Model of Fibre Reinforced Cementitious Materials. Cement and Concrete Research 3 (1973) 397–411.

    Article  Google Scholar 

  17. Argon, A.S. and W.J. Shack. Theories of Fibre Cement and Fibre Concrete, in RILEM Symp. Fibre Reinforced Cement and Concrete ( Lancaster: The Construction Press Ltd., 1975 ) pp. 39–53.

    Google Scholar 

  18. Mindess, S. The Fracture of Fibre-Reinforced and Polymer Impregnated Concretes. International Journal of Cement Composites 2 (1980) 3–11.

    Google Scholar 

  19. American Society for Testing and Materials. Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials. E 399–74, Annual Book, Part 10, 1978.

    Google Scholar 

  20. British Standards Institution. Method for Plane Strain Fracture Toughness (KIC) Testing. BS 5447, 1977.

    Google Scholar 

  21. Rooke, P.P. and D.V. Cartwright. Compendium of Stress Intensity Factors. ( London: H.M. Stationery Office, 1976 ).

    Google Scholar 

  22. Sih, G.C. Handbook of Stress Intensity Factors (Bethlehem: Institute of Fracture and Solid Mechanics, Lehigh University, 1973 ).

    Google Scholar 

  23. Tada, H., P.C. Paris and G.R. Irwin. Stress Analysis of Cracks Handbook. (Hellertown, Pennsylvania: Del Research Corporation, 1973 ).

    Google Scholar 

  24. Irwin, G.R. Fracture, in S. Flügge, ed., Handbook of Physics ( Berlin: Springer, 1958 ) Vol. VI, pp. 551–590.

    Google Scholar 

  25. Dugdale, D.S. Yielding of Steel Sheets Containing Slits. Journal Mechanics and Physics of Solids. 8 (1960) 100–104.

    Article  ADS  Google Scholar 

  26. American Society for Testing and Materials. Standard Method — The Determination of JIC, a Measure of Fracture Toughness. E813–81, Annual Book, Part 10, 1983.

    Google Scholar 

  27. British Standard Institution. Methods for Crack Opening Displacement Testing. BS 5762, 1979.

    Google Scholar 

  28. Matsoukas, G., B. Cotterell and Y.W. Mai. A Note on the Plastic Rotation Constant Used in Standard COD Tests. Progress Report to the Australian Welding Research Association, Feb. 1984.

    Google Scholar 

  29. Gurney, C. and J. Hunt. Quasistatic Crack Propagation. Proc. Royal Society, London, A299 (1967) 508–524.

    Article  ADS  Google Scholar 

  30. Gurney, C. and K.M. Ngan. Quasistatic Crack Propagation in Non-linear Structures. Proc. Royal Society, London, A325 (1971) 207–222.

    Article  ADS  MATH  Google Scholar 

  31. Gurney, C. and Y.W. Mai. Stability of Cracking. Engineering Fracture Mechanics 4 (1972) 853–863.

    Article  Google Scholar 

  32. Gurney, C., Y.W. Mai and R.C. Owen. Quasistatic Crack Propagation in Materials with High Toughness and Low Yield Stress. Proc. Royal Society, London, A340 (1974) 213–231.

    Article  ADS  MATH  Google Scholar 

  33. Atkins, A.G. and Y.W. Mai. Elastic and Plastic Fracture. (Chichester: Ellis Horwood Publishers, in course of preparation).

    Google Scholar 

  34. Mai, Y.W. and A.G. Atkins. Crack Stability in Fracture Toughness Testing. Journal of Strain Analysis 15 (1980) 63–74.

    Article  Google Scholar 

  35. Tattersall, H.G. and G. Tappin. The Work of Fracture and Its Measurement in Metals, Ceramics and Other Materials. Journal of Materials Science 1 (1966) 296–301.

    Article  ADS  Google Scholar 

  36. Hodgkinson, J.M. and J.G. Williams. J and Gc Analysis of Tearing of a Highly Ductile Polymer. Journal of Materials Science 16(1981)50–56.

    Article  ADS  Google Scholar 

  37. Wecharatana, M. and S.P. Shah. Double Torsion Tests for Studying Slow Crack Growth of Portland Cement Mortar. Cement and Concrete Research 10 (1980) 833–844.

    Article  Google Scholar 

  38. Brown, J.H.. The Failure of Glass Fibre Reinforced Notched Beams in Flexure. Magazine of Concrete Research 25 (1973) 31–38.

    Google Scholar 

  39. Lenain, J.C. and A.R. Bunsell. The Resistance to Crack Growth of Asbestos Cement. Journal of Materials Science, 14 (1979) 321–332.

    Article  ADS  Google Scholar 

  40. Patterson, W.A. and H.C. Chan. Fracture Toughness of Glass Fibre-Reinforced Cement. Composites 6 (1975) 102–104.

    Article  Google Scholar 

  41. Mindess, S. and A. Bentur. The Fracture of Wood Fibre Reinforced Cement. International Journal of Cement Composites and Light Weight Concrete 4 (1982) 245–249.

    Article  Google Scholar 

  42. Mai, Y.W. Strength and Fracture Properties of Asbestos Cement Mortar Composites. Journal of Materials Science 14 (1979) 2091–2102.

    Article  ADS  Google Scholar 

  43. Mai, Y.W., R.M.L. Foote and B. Cotterell. Size Effects and Scaling Laws of Fracture in Asbestos Cement. International Journal of Cement Composites 2 (1980) 23–34.

    Google Scholar 

  44. Foote, R.M.L., B. Cotterell and Y.W. Mai. Crack Growth Resistance Curve for a Cement Composite, in D.M. Roy, ed., Advances in Cement-Matrix Composites ( Pennsylvania: Materials Research Society, 1980 ) pp. 135–144.

    Google Scholar 

  45. Andonian, R., Y.W. Mai and B. Cotterell. Strength and Fracture Properties of Cellulose Fibre Reinforced Cement Composites. International Journal of Cement Composites 1 (1979) 151–158.

    Google Scholar 

  46. Mai, Y.W. and M.I. Hakeem. Slow Crack Growth in Cellulose Fibre Cements. Journal of Materials Science 19 (1984) 501–508.

    Article  ADS  Google Scholar 

  47. Mai, Y.W., M.I. Hakeem and B. Cotterell. Effects of Water and Bleaching on the Mechanical Properties of Cellulose Fibre Cements. Journal of Materials Science 18 (1983) 2156–2162.

    Article  ADS  Google Scholar 

  48. Mai, Y.W., R. Andonian and B. Cotterell. On Polypropylene-Cellulose Fibre-Cement Hybrid Composites, in A.R. Bunsell et al, eds., Advances in Composite Materials ( Oxford: Pergamon Press, 1980 ) Vol. 2, pp. 1687–1699.

    Google Scholar 

  49. Rice, J.R., P.C. Paris and J.G. Merkle. Some Further Aspects of J-Integral Analysis and Estimates, in ASTM STP No. 536, 1973, pp. 231–245.

    Google Scholar 

  50. Visalvanich, K. and A.E. Naaman. Fracture Methods in Cement Composites. Journal of the Engineering Mechanics Division, Proc. ASCE, 107 (1981) 1155–1171.

    Google Scholar 

  51. Harris, B., J. Varlow and C.D. Ellis. The Fracture Behaviour of Fibre Reinforced Concrete. Cement and Concrete Research 2 (1972) 447–461.

    Article  Google Scholar 

  52. Mindess, S., F.V. Lawrence and C.E. Kesler. The J-Integral as a Fracture Criterion for Fibre Reinforced Concrete. Cement and Concrete Research 7 (1977) 731–742.

    Article  Google Scholar 

  53. Nishioka, K., S. Yamakawa, S. Hirakawa and S. Akihama. Test Method for the Evaluation of the Fracture Toughness of Steel Fibre Reinforced Concrete, in RILEM Symp. Testing and Test Methods of Fibre Cement Composites (Lancaster: The Construction Press, Ltd., 1978 ) pp. 87–98.

    Google Scholar 

  54. Velazco, G., K. Visalvanich and S.P. Shah. Fracture Behaviour and Analysis of Fibre Reinforced Concrete Beams. Cement and Concrete Research 10 (1980) 41–51.

    Article  Google Scholar 

  55. Swamy, R.N. Influence of Slow Crack Growth on the Fracture Resistance of Fibre Cement Composites. International Journal of Cement Composites 2 (1980) 43–53.

    Google Scholar 

  56. Halvorsen, G.T. J-Integral Study of Steel Fibre Reinforced Concrete. International Journal of Cement Composites 2 (1980) 13–22.

    Google Scholar 

  57. Brandt, A.M. Crack Propagation Energy in Steel Fibre Reinforced Concrete. International Journal of Cement Composites 2 (1980) 35–42.

    Google Scholar 

  58. Harris, B. Micromechanisms of Crack Extension in Composites. Metal Science 14 (1980) 351–362.

    Google Scholar 

  59. Helfet, T.L. and B. Harris. Fracture Toughness of Composites Reinforced with Discontinuous Fibres. Journal of Materials Science 7 (1972) 494–498.

    Article  ADS  Google Scholar 

  60. Naaman, A.E. and S.P. Shah. Bond Studies on Oriented and Aligned Steel Fibres, in RILEM Symp. Fibre Reinforced Cement and Concrete ( Lancaster: The Construction Press Ltd., 1975 ) pp. 171–178.

    Google Scholar 

  61. Morton, J. The Work of Fracture of Random Fibre Reinforced Cement. Materials and Structures 12 (1979) 393–396.

    ADS  Google Scholar 

  62. Hibbert, A.P. and D.J. Hannant. Toughness of Fibre Cement Composites. Composites 13 (1982) 105–111.

    Article  Google Scholar 

  63. Petersson, P.E. Fracture Mechanical Calculations and Tests for Fibre-Reinforced Cementitious Materials, in D.M. Roy, ed., Advances in Cement-Matrix Composites ( Pennsylvania: Materials Research Society, 1980 ) pp. 95–106.

    Google Scholar 

  64. Hillerborg, A. Analysis of Fracture by Means of the Fictitious Crack Model, Particularly for Fibre Reinforced Concrete. International Journal of Cement Composites 2 (1980) 177–184.

    Google Scholar 

  65. Foote, R.M.L. and G.P. Steven. Modelling of Crack Growth Resistance Curves, in G.C. Sih, ed., Fracture Mechanics Technology Applied to Material Evaluation and Structure Design ( The Hague: Martinus Nijhoff Publishers, 1983 ) pp. 295–304.

    Google Scholar 

  66. Paris, P.C. and G.C. Sih. Stress Analysis of Cracks, in Fracture Toughness Testing and its Application, ASTM STP 381, 1964, pp. 30–83.

    Google Scholar 

  67. Muskhelishivili, N.I. Some Basic Problems of the Mathematical Theory of Elasticity. ( Leyden: Noordhoff International, 1976 ).

    Google Scholar 

  68. Mai, Y.W., B. Cotterell and R.M.L. Foote. To be published.

    Google Scholar 

  69. Wecharatana, M. and S.P. Shah. A Model for Predicting Fracture Resistance of Fibre Reinforced Concrete. Cement and Concrete Research 13 (1983) 819–829.

    Article  Google Scholar 

  70. Mai, Y.W. and B. Cotterell. Slow Crack Growth and Fracture Instability of Cement Composites. International Journal of Cement Composites and Lightweight Structures 4 (1982) 33–37.

    Article  Google Scholar 

  71. Gylltoft, K. Fracture Mechanics Models for Fatigue in Concrete Structures. Doctoral Thesis. Luleä University of Technology, Sweden, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Mai, Y.W. (1985). Fracture Measurements of Cementitious Composites. In: Shah, S.P. (eds) Application of Fracture Mechanics to Cementitious Composites. NATO ASI Series, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5121-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5121-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8764-3

  • Online ISBN: 978-94-009-5121-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics