Skip to main content

Fatigue Crack Growth — A Metallurgist’s Point of View

  • Conference paper
Time-Dependent Fracture

Abstract

Microstructural processes leading to fatigue crack formation in metals are reviewed. The eventual occurrence of persistent slip bands in polycrystalline fee and age hardened bcc low carbon alloys is discussed. Fatigue threshold is compared to the conventional fatigue limit with particular emphasis on cryogenic behaviour. The microfractographic characteristics of near-threshold and Paris law crack propagation regions are considered with respect to striations, strongly microstructurally influenced crack growth and cyclic cleavage crack growth mechanisms. The materials under consideration are stainless steel, Ti-6A1-4V, Co-Cr-Mo, low carbon steels and HSLA steels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thompson, N. and J.N. Wadsworth, Metal Fatigue, Advances in Physics 7 (1958) 72–170.

    ADS  Google Scholar 

  2. Laird, C., Mechanisms and Theories of Fatigue, Fatigue and Microstructure (ASM Seminar,1979) 149–203,

    Google Scholar 

  3. Starke, E.A. and G. Lutjering, Cyclic Plastic Deformation and Microstructure, ibid. 205–239.

    Google Scholar 

  4. Fine, M.E. and R.O. Ritchie, Fatigue Crack Initiation and Near- Threshold Crack Growth, ibid. 245–278.

    Google Scholar 

  5. Mughrabi, H., Microscopic Mechanisms of Metal Fatigue, Strength of Metals and Alloys,Proc.5th Int.Conf.Vol.3,Pergamon(1980)1615–1637.

    Google Scholar 

  6. Rosinger, H.E.,W.J. Bratina and G.B. Craig, Growth of Cylindrical Iron Single Crystals by the Strain-Anneal Technique, J. of Crystal Growth 7 (1970) 42–44.

    Article  ADS  Google Scholar 

  7. Basinski, Z.S., A.S. Korbel and J.S. Basinski, Acta Metall. 28 (1980) 191.

    Article  Google Scholar 

  8. Christian, J.W., Some Surprising Features of the Plastic Deformation of BCC Metals and Alloys,Metall.Trans.14 A (1983) 1237–1256.

    Article  Google Scholar 

  9. Grosskreutz,J.C., Fundamental Knowledge of Fatigue Fracture, Int. Congress on Fracture (Munich, 1973) PLB-212,

    Google Scholar 

  10. Basinski, Z.S.,R. Pascual and S.J. Basinski, Low Amplitude Fatigue of Copper Single Crystals, Acta Metal. 31 (1983) 591–602.

    Article  Google Scholar 

  11. Forman,R.G., V.E. Kearney and R.M. Engle,Trans. ASME 89 (1967)459.

    Google Scholar 

  12. Neumann,P., H. Fuhlrott and H. Vehoff, Experiments Concerning Brittle, Ductile and Environmentally Controlled Fatigue Crack Growth, Fatigue Mechanisms, ASTM STP 675 (1979) 371–395.

    Google Scholar 

  13. Runkle, J.C. and R.M. Pelloux, Micromechanisms of Low-Cycle Fatigue in Nickel-Based Superalloys at Elevated Temperatures, Fatigue Mechanisms, ASTM STP 675 (1979) 501–527.

    Google Scholar 

  14. Fatigue 84 Programme. 2nd Int. Conf. on Fatigue and Fatigue Thresholds (1984), University of Birmingham.

    Google Scholar 

  15. Campbell, J.E., Fracture Properties of Wrought Stainless Steels, Applications of Fracture Mechanics, ASM (1982) 105–167.

    Google Scholar 

  16. Kilner, T., Ph.D. Thesis, University of Toronto (1984).

    Google Scholar 

  17. Rosenberg, H.W., J.C. Chesnutt and H. Margolin, Fracture Properties of Titanium Alloys, Applications of Fracture Mechanics, ASM (1982) 213–252,

    Google Scholar 

  18. Mughrabi, H., F. Ackermann and K. Herz, Persistent Slip Bands in Fatigued FCC and BCC Metals,Fatigue Mechanisms,ASTM STP 675 (1979) 69–105.

    Google Scholar 

  19. McGrath, J.T. and W.J. Bratina, Interaction of Dislocations and Precipitates in Quench Aged Fe-C Alloys Subjected to Cyclic Stressing, Acta Metall. 15 (1967) 329–339.

    Article  Google Scholar 

  20. McGrath, J.T. and W.J. Bratina, The Mechanical and Microstructural Changes in Quench-Aged Fe-C AlloysSubjected to Cyclic Straining, Czech. J. Physics B19 (1969) 284–293.

    Article  ADS  Google Scholar 

  21. Vogel, W., H. Wilhelm and V. Ceroid, Persistent Slip Bands in Fatigued Peak Aged Al-Zn-Sn Single Crystals, Acta Metall. 30 (1982) 21–30,

    Article  Google Scholar 

  22. Katagiri, K., J. Awatani, A. Omura, K. Koyanagi and T. Shiraishi, Dislocation Structures Around the Crack Tips in the Early Stage in Fatigue of Iron, Fatigue Mechanisms, ASTM STP 675 (1979)106–128.

    Google Scholar 

  23. Gonzalez, G. and C. Laird, The Cyclic Response of Dilute Iron Alloys, Metall. Trans. 14 A (1983) 2507–2515.

    Article  Google Scholar 

  24. McGrath, J.T. and W.J. Bratina, Fatigue of an Fe-1.5% Cu Alloy Containing Stable, Non-coherent Precipitate Particles, Phil. Mag. 21 (1970) 1087–1091.

    Article  ADS  Google Scholar 

  25. Conrad, H., M. Doner and B. de Meester, Deformation and Fracture, Titanium Science and Technology, Vol. 2, (Jaffee and Burte, eds. Plenum Press, 1973) 969–1005,

    Google Scholar 

  26. Partridge, P.G. and C.J. Peel, Effect of Cyclic Stress on Unalloyed Polycrystalline Titanium, The Science, Technology and Application of Titanium (Jaffee and Promisel eds. Pergamon Press, 1970) 517,

    Google Scholar 

  27. Beevers, C.J., Fatigue Behaviour of Alpha Titanium and Alpha-titanium-hydrogen Alloys, ibid. 535.

    Google Scholar 

  28. Beevers, C.J. and J.L. Robinson, Some Observations on the Influence of Oxygen Content on the Fatigue Behaviour of Alpha Titanium, J. Less Common Metals 17 (1969) 345–352,

    Article  Google Scholar 

  29. Benson, D.K., J.C. Grosskreutz and G.G. Shaw, Mechanisms of Fatigue in Mill Annealed Ti-6A1-4V at RT and 600°C,Metall. Trans. 3A (1972) 1239.

    Article  Google Scholar 

  30. Wells, C.H. and C.P. Sullivan, Low Cycle Fatigue Crack Initiation in Ti-6A1-4V, Trans. ASM 62 (1969) 263.

    Google Scholar 

  31. Stubbington, C.A. and A.W. Bowen, Improvements in the Fatigue Strength of Ti-6A1-4V Through Microstructural Control, J.Materials Science 9 (1974) 941–947.

    Article  ADS  Google Scholar 

  32. Brown, R. and G.C. Smith, Crack Initiation in an Aligned Titanium Alloy Containing an Interface Layer, Scripta Metall. 15 (1981) 357–360.

    Google Scholar 

  33. Gerberich, W.W., W. Yu and K. Esaklul, Fatigue Threshold Studies in Fe, Fe-Si and HSLA Steels, Parts I and II, Metall. Trans. 15A (1984) 875–900.

    Article  Google Scholar 

  34. Ritchie, R.O., Near-Threshold Fatigue Crack Propagation in Steels, International Metals Rev. No. 245 (1979) 205–230,

    Google Scholar 

  35. Dickson, J.I., J.P. Bailon and J. Masounave, A Review on the Threshold Stress Intensity Range for Fatigue Crack Propagation, Can.Met. Quarterly 20 (1981) 317–329.

    Google Scholar 

  36. Gerberich, W.W. and N.R. Moody, A Review of Fatigue Fracture Topology Effects on Threshold and Growth Mechanisms, Fatigue Mechanisms, ASTM STP 675 (1979) 292–341.

    Google Scholar 

  37. Tschegg, E. and S. Stanzl, Fatigue Crack Propagation and Threshold in bcc and fee Metals at 77 and 2’93K, Acta.Metall. 29 (1981) 33–40.

    Article  Google Scholar 

  38. Gerberich, W.W. and K.A. Peterson, Micro and Macromechanics Aspects of Time Dependent Crack Growth, Micro and Macro Mechanics of Crack Growth, AIME The Metall. Society (1982) 1–17.

    Google Scholar 

  39. Gerberich,W.W. and K. Jatavallabhula, Quantitative Fractography and Dislocation Interpretations of the Cyclic Cleavage Crack Growth Process, Acta Metall. 31 (1983) 241–255.

    Google Scholar 

  40. Yu, W. and W.W. Gerberich, On the Controlling Parameters for Fatigue Crack Threshold at Low Homologous Temperatures, Scripta Metall. 17 (1983) 105–110.

    Article  Google Scholar 

  41. Fatigue Thresholds, International Conference, Stockholm, Backlund, J., A.F. Bloom and C.J. Beevers, eds. (1982) Various papers.

    Google Scholar 

  42. Rosinger, H.E., G.B. Craig and W.J. Bratina, The Recovery of Internal Friction in an Iron-Carbon Alloy, Phil. Mag. 25 (1972) 1331–1343,

    Article  ADS  Google Scholar 

  43. Dickson, J.I., M-C. Lu and J.P. Bailon, The Influence of Strain Aging on the Fatigue Crack Propagation Threshold, Scripta Metall. 17 (1983) 49–52.

    Article  Google Scholar 

  44. Majundar, D. and Y-W Chung, Surface Deformation and Crack Initiation During Fatigue of Vacuum Melted Iron:Environmental Effects, Metall. Trans. 14 A (1983) 1421–1425.

    Article  Google Scholar 

  45. Gerberich, W.W., R.H. Van Stone and A.W. Gunderson, Fracture Properties of Carbon and Alloy Steels, Appl. Fracture Mechanics, ASM (1982) 41–103,

    Google Scholar 

  46. Yue, S., and W.J. Bratina, The Deformation Behaviour of a HSLA Steel Over the Temperature Range from 77 to 298K, to be published,

    Google Scholar 

  47. Kannan, A., M.A.Sc. Thesis, University of British Columbia (1982).

    Google Scholar 

  48. Bratina, W.J. and R.M. Pilliar, Fatigue Characteristics of Metallic and Non-Metallic Surgical Implant Materials, Proc. 1st Mediterranean Conf. Biomedical Eng., Sorrento, Italy, (1977) Vol. II, 28,

    Google Scholar 

  49. Bratina, W.J., A.C. Wallace and J.L. Co, Fracture Studies of Stainless Steel Orthopaedic Implants, Proc. 3rd Mediterranean Conf. Biomedical Eng., Portorož, Yugoslavia, (1983) 2. 1.

    Google Scholar 

  50. SEM and TEM Fractography Handbook, Battelle Memorial Institute, Columbus (1975) and Electron Fractography Handbook, Battelle Memorial Institute, Columbus (1976).

    Google Scholar 

  51. R.H. Jeal, Rolls Royce, U.K. Private communication.

    Google Scholar 

  52. Hornbogen, E. and K. H,Zum Gahr, Acta Metall. 24 (1976) 581–592.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publisher, Dordrecht

About this paper

Cite this paper

Bratina, W.J., Yue, S. (1985). Fatigue Crack Growth — A Metallurgist’s Point of View. In: Krausz, A.S. (eds) Time-Dependent Fracture. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5085-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5085-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8748-3

  • Online ISBN: 978-94-009-5085-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics