Skip to main content

Endogenous and exogenous influences on the regulation of lateral root formation

  • Chapter
New Root Formation in Plants and Cuttings

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 20))

Abstract

According to Sutton and Tinus [1] who adopted the definition by Russell [2], a lateral root is a side root ‘that arises by cell division in the pericycle of the parent root. The resulting dome of tissue penetrates the cortex. When the lateral root emerges from the parent root, its apical meristem is comparable with that of the apex of the parent root.’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sutton, R.F. & Tinus, R.W. (1983) Root and Root System Terminology. Forest Science Monograph 24, Society of American Foresters, Washington, D.C.

    Google Scholar 

  2. Russell, R.S. (1977) Plant Root Systems, McGraw Hill, London.

    Google Scholar 

  3. Bonnett, H.T. Jr.. (1969) Cortical cell death during lateral root formation. Journal of Cell Biology 40, 144–159.

    PubMed  Google Scholar 

  4. McCully, M. 1975) The development of lateral roots. In The Development and Function of Roots (eds J.G. Torrey, and D.T. Clarkson), pp. 105–124. Academic Press, London, New York, San Francisco.

    Google Scholar 

  5. Clowes, F.A.L. (1958) Development of quiescent centres in root meristems. The New Phytologist, 57, 85–88.

    Google Scholar 

  6. Byrne, J.M. (1973) The root apex of Malva sylvestris. III. Lateral root development and the quiescent center. American Journal of Botany 60, 657–662.

    Google Scholar 

  7. Torrey, J.G. (1965) Physiological bases of organization and development in the root. Handbook of Plant Physiology XV/I. (ed A. Lang), pp. 1256–1327. Springer-Verlag, Berlin.

    Google Scholar 

  8. Torrey, J.G. (1967) Root hormones and plant growth. Annual Review of Plant Physiology, 27, 437–459.

    Google Scholar 

  9. Torrey, J.G. & Feldman, L.J. (1977) The organization and function of the root apex. American Scientist, 65, 334–344.

    Google Scholar 

  10. Ellmore, G.S. (1982) The organization and plasticity of plant roots. Scanning Electron Microscopy III, 1083–1102.

    Google Scholar 

  11. Feldman, L.J. (1984) Regulation of root development. Annual Review of Plant Physiology, 35, 223–242.

    PubMed  CAS  Google Scholar 

  12. Charlton, W. A. (1983) Patterns and control of lateral root initiation. In Growth Regulators and Root Development, Monograph 10 (eds. M.B. Jackson and A.D. Stead), pp. 1–14. British Plant Growth Regulator Group, Wantage, U.K.

    Google Scholar 

  13. Foard, D.E., Haber, A.H. & Fishman, T.N. (1965) Initiation of lateral root primordia without completion of mitosis and without cytokinesis in uniserate pericycle. American Journal of Botany, 52, 580–590.

    Google Scholar 

  14. Yeoman, M.M. (1970) Early development in callus cultures. International Review of Cytology, 29, 483–509.

    Google Scholar 

  15. Bhojovani, S.S. & Razdan, M.K. (1983) Plant Tissue Culture: Theory and Practise. Elsevier, Amsterdam.

    Google Scholar 

  16. Esau, K. (1965) Plant Anatomy, 2nd edition. John Wiley, New York.

    Google Scholar 

  17. Torrey, J.G. (1950) The induction of lateral roots by indoleacetic acid and root decapitation. American Journal of Botany, 37, 257–264.

    CAS  Google Scholar 

  18. Bonnett, H.T. Jr. & Torrey, J.G. (1965) Chemical control of organ formation in root segments of Convolvulus cultured in vitro. Plant Physiology, 40, 1228–1236.

    PubMed  CAS  Google Scholar 

  19. Feldman, L.J. (1979) Cytokinin biosynthesis in roots of corn. Planta, 145, 315–321.

    CAS  Google Scholar 

  20. Feldman, L.J. (1979) The proximal meristem in the root apex of Zea mays L. Annals of Botany, 43, 1–9.

    Google Scholar 

  21. Feldman, L.J. (1980) Auxin biosynthesis and metabolism in isolated roots of Zea mays. Physiologia Plantarum, 49, 145–150.

    Google Scholar 

  22. Feldman, L.J. & Torrey J.G. (1976) The isolation and culture in vitro of the quiescent centre in Zea mays. American Journal of Botany, 63, 345–355.

    Google Scholar 

  23. Blakely, L.M., Durham, M., Evans, T.A. & Blakely, R.M. (1982) Experimental studies on lateral root formation in radish seedling roots. I. General methods, developmental stages, and spontaneous formation of laterals. Botanical Gazette, 143, 341–352.

    Google Scholar 

  24. Blakely, L.M. & Evans, T.A. (1979) Cell dynamics studies on the pericycle of radish seedling roots. Plant Science Letters, 14, 79–83.

    CAS  Google Scholar 

  25. Riopel, J.L. (1966) The distribution of lateral roots in Musa acuminata ‘Gros Michel’. American Journal of Botany, 53, 403–407.

    Google Scholar 

  26. Riopel, J.L. (1969) Regulation of lateral root positions. Botanical Gazette, 130, 80–83.

    Google Scholar 

  27. Charlton, W. A. (1975) Distribution of lateral roots and pattern of lateral initiation in Pontederia cordata L. Botanical Gazette, 136, 225–235.

    Google Scholar 

  28. Henderson, R., Ford, E.D., Renshaw, E. & Deans, J.D. (1983) Morphology of the structural root system of Sitka Spruce. 1. Analysis and quantitative description. Forestry, 56, 121–135.

    Google Scholar 

  29. Charlton, W. A. (1977) Evaluation of sequence and rate of lateral-root initiation in Pontederia cordata L. by means of colchicine inhibition of cell division. Botanical Gazette, 138, 71–79.

    Google Scholar 

  30. Kawata, S. & Ishihara, I. (1977) Correlations among size of root apex, root apex — lateral distance, and elongation rate in rice roots. Japanese Journal of Crop Science, 46, 228–238 (in Japanese with English summary).

    Google Scholar 

  31. Barlow, P.W. & Rathfelder, E.L. (1984) Correlations between the dimensions of different zones of grass root apices, and their implications for morphogenesis and differentiation in roots. Annals of Botany, 53, 249–260.

    Google Scholar 

  32. Rowntree, R.A. & Morris, D.A. (1979) Accumulation of 14C from exogenous labelled auxin in lateral root primordia of intact pea seedlings (Pisum sativum L.) Planta, 144, 463–466.

    CAS  Google Scholar 

  33. Mallory, T.E., Chiang, S.-H., Cutter, E.G. & Gifford, E. Jr.. (1970) Sequence and pattern of lateral root formation in five selected species. American Journal of Botany, 57, 800–809.

    Google Scholar 

  34. Chadwick, A.V. & Burg, S.P. (1970) Regulation of root growth by auxin-ethylene interaction. Plant Physiology, 45, 192–200.

    PubMed  CAS  Google Scholar 

  35. Blakely, L.M., Rodaway, S.J. Hollen, L.B. & Croker, S.G. (1972) Control and kinetics of branch root formation in cultured root segments of Haplopappus ravenii. Plant Physiology, 50, 35–42.

    PubMed  CAS  Google Scholar 

  36. Webster, B.D. & Radin, J.W. (1972) Growth and development of cultured radish roots. American Journal of Botany, 59, 744–751.

    CAS  Google Scholar 

  37. Wightman, F. & Thimann, K.V. (1980) Hormonal factors controlling the initiation and development of lateral roots. 1. Source of primordia-inducing substances in the primary root of pea seedlings. Physiologia Plantarum, 49, 13–20.

    CAS  Google Scholar 

  38. Wightman, F., Schneider, E.A. & Thimann, K.V. (1980) Hormonal factors controlling the initiation and development of lateral roots. II. Effects of exogenous growth factors on lateral root formation in pea roots. Physiologia Plantarum, 49, 304–314.

    CAS  Google Scholar 

  39. Robbins, W.J. & Hervey, A. (1978) Auxin, cytokinin and growth of excised roots of Bryophyllum calycinum. American Journal of Botany, 65, 1132–1134.

    CAS  Google Scholar 

  40. Skoog, F. & Miller, C.O. (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposium of the Society for Experimental Biology, 11, 118–130.

    CAS  Google Scholar 

  41. Torrey, J.G. (1956) Chemical factors limiting lateral root formation in isolated pea roots. Physiologia Plantarum, 9, 370–388.

    CAS  Google Scholar 

  42. Torrey, J.G. (1962) Auxin and purine interactions in lateral root initiation in isolated pea root segments. Physiologia Plantarum, 15, 177–185.

    CAS  Google Scholar 

  43. Butcher, D.N. & Street, H.E. (1960) The effect of gibberellins on the growth of excised tomato roots. Journal of Experimental Botany, 11, 206–216.

    CAS  Google Scholar 

  44. Goodwin, P.B. & Morris, S.C. (1979) Application of phytohormones to pea roots after removal of the apex: effect on lateral root production. Australian Journal of Plant Physiology, 6, 195–200.

    CAS  Google Scholar 

  45. Bottger, M. (1974) Apical dominance in roots of Pisum sativum L. Planta, 121, 253–261.

    Google Scholar 

  46. Torrey, J.G. (1954) The role of vitamins and micronutrient elements in the nutrition of the apical meristem of pea roots. Plant Physiology, 29, 279–287.

    PubMed  CAS  Google Scholar 

  47. Street, H.E. & Henshaw, G.G. (1966) Growth, differentiation and organogenesis in plant tissue and organ culture. In Cells and Tissues in Culture Vol. 3. (ed E.N. Willmer) pp. 459–689 Academic Press, London, New York, San Francisco.

    Google Scholar 

  48. Goforth, P.L. & Torrey, J.G. (1977) The development of isolated roots of Comptonia peregrina ( Myricaceae) in culture. American Journal of Botany, 64, 476–482.

    CAS  Google Scholar 

  49. Rivier, L., Milon, H. & Pilet, P-E. (1977) Gas chromatography-mass spectrometric determinations of abscisic acid levels in the cap and the apex of maize roots. Planta, 134, 23–27.

    CAS  Google Scholar 

  50. Böttger, M. (1978) The occurrence of cis-trans-and trans-trans-xanthoxin in pea roots. Zeitschrift für Pflanzenphysiologie, 86, 265–268.

    Google Scholar 

  51. Evans, L.S. (1979) Developmental aspects of roots of Pisum sativum influenced by the G2 factor from cotyledons. American Journal of Botany, 66, 880–886.

    CAS  Google Scholar 

  52. Bowen, G.D. (1981) Coping with low nutrients. In The Biology of Australian Plants (eds J.S. Pate and A.J. McComb) pp. 33–64. University of Western Australia Press, Nedlands.

    Google Scholar 

  53. Lamont, B. (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean South Africa and Western Australia. Botanical Review, 48, 597–689.

    CAS  Google Scholar 

  54. Harley, J.L. & Smith, S.E. (1983) Mycorrhizal Symbiosis. Academic Press, London.

    Google Scholar 

  55. Paleg, L.G. & Aspinall, D. (eds) (1979) Physiology and Biochemistry of Drought Resistance in Plants. Academic Press, Sydney.

    Google Scholar 

  56. Vartanian, N. (1981) Some aspects of structural and functional modifications induced by drought in root systems. Plant and Soil, 63, 83–92.

    Google Scholar 

  57. Brown, M.E. (1972) Plant growth substances produced by micro-organisms of soil and rhizosphere. Journal of Applied Bacteriology, 35, 443–451.

    CAS  Google Scholar 

  58. Lynch, J.M. (1982) Interactions between bacteria and plants in the root environment. In Plants and Bacteria, (eds M. Rhodes-Roberts and F.A. Skinner), pp. 1–23. Academic Press, London, New York, San Francisco.

    Google Scholar 

  59. Dobereiner, J. (1974) Nitrogen-fixing bacteria in the rhizosphere. In The Biology of Nitrogen Fixation (ed A. Quispel), pp. 86–120. North Holland, Amsterdam, The Netherlands.

    Google Scholar 

  60. Gaskins, M.H. & Hubbell, D.H. (1979) Response of non-leguminous plants to root inoculation with free-living diazotrophic bacteria. In The Soil-Root Interface (eds J.L. Harley and R.S. Russell), pp. 176–182. Academic Press, London.

    Google Scholar 

  61. Brown, M.E. (1982) Nitrogen Fixation by free-living bacteria associated with plants — fact or fiction? In Bacteria and Plants (eds M.E. Rhodes-Roberts and F.A. Skinner), pp. 25–41. Academic Press, London, New York, San Francisco.

    Google Scholar 

  62. Callaham, D., Newcomb, W., Torrey, J.G. & Peterson, R.L. (1979) Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica and Comptonia. Botanical Gazette 140, (Suppl.) S1–S9.

    Google Scholar 

  63. Bowes, B., Callaham, D. & Torrey, J.G. (1977) Time-lapse photographic observations and morphogenesis in root nodules of Comptonia peregrina (Myricaceae). American Journal of Botany, 64, 516–525.

    Google Scholar 

  64. Callaham, D. & Torrey, J.G. (1977) Prenodule formation and primary nodule development in roots of Comptonia (Myricaceae). Canadian Journal of Botany, 55, 2306–2318.

    Google Scholar 

  65. Torrey, J.G. (1978) Nitrogen fixation by actinomycete-nodulated angiosperms. Bioscience 28, 586–591.

    Google Scholar 

  66. Torrey, J.G. & Callaham, D. (1978) Determinate development of nodule roots in actinomyceteinduced root nodules of Myrica gale. Canadian Journal of Botany, 56, 1357–1364.

    Google Scholar 

  67. Schwintzer, C.R., Berry, A.M. & Disney, L.D. (1982) Seasonal patterns of root nodule growth, endophyte morphology, nitrogenase activity, and shoot development in Myrica gale. Canadian Journal of Botany, 60, 746–757.

    Google Scholar 

  68. Torrey, J.G. (1976) Initiation and development of root nodules of Casuarina (Casuarinaceae). American Journal of Botany, 63, 335–344.

    Google Scholar 

  69. Angulo Carmona, A.F. (1974) La formation des nodules fixateurs d’azote chez Alnus glutinosa (L.) Vill. Acta Botanica Neerlandica, 23, 257–303.

    Google Scholar 

  70. Becking, J.H. (1975) In The Development and Function of Roots, (eds J.G. Torrey and D.T. Clarkson) pp. 507–566. Academic Press, London, New York, San Francisco.

    Google Scholar 

  71. Callaham, D., DelTredici, P. & Torrey, J.G. (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science, 199, 899–902.

    PubMed  CAS  Google Scholar 

  72. Wheeler, C.T., Crozier, A. & Sandberg, G. (1984) The biosynthesis of indole-3-acetic acid by Frankia. Plant and Soil, 78, 99–104.

    CAS  Google Scholar 

  73. Wheeler, C.T., Henson, I.E. & McLaughlin, M.E. (1979) Hormones in plants bearing actinomycete nodules. Botanical Gazette, 140 (Suppl.), S52–S57.

    Google Scholar 

  74. Rivier, L. & Pilet, P.-E. (1974) Indolyl-3-acetic acid in cap and apex of maize roots: identification and quantification by mass fragmentography. Planta, 120, 107–112.

    CAS  Google Scholar 

  75. Bridges, I.G., Hillman, J.R. & Wilkins, M.B. (1973) Identification and localization of IAA in primary roots of Zea mays by mass spectrometry. Planta, 115, 189–192.

    CAS  Google Scholar 

  76. Greenwood, M.S., Hillman J.R., Shaw, S. & Wilkins, M.B. (1973) Localization and identification of auxin in roots of Zea mays. Planta, 109, 369–374.

    CAS  Google Scholar 

  77. Pengelly, W.L. & Torrey, J.G. (1982) The relationships between growth and indole-3-acetic acid content of roots of Pisum sativum L. Botanical Gazette, 143, 195–200.

    CAS  Google Scholar 

  78. Short, K.C. & Torrey, J.G. (1972) Cytokinins in seedling roots of pea. Plant Physiology, 49, 155–160.

    PubMed  CAS  Google Scholar 

  79. Van Staden, J. & Smith, A.R. (1978) The synthesis of cytokinins in excised roots of maize and tomato under aseptic conditions. Annals of Botany, 42, 751–753.

    Google Scholar 

  80. Radley, M. (1961) Gibberellin-like substances in plants. Nature, 191, 684–685.

    PubMed  CAS  Google Scholar 

  81. Dullaart, J. & Duba, L.I. (1970) Presence of gibberellin-like substances and their possible role in auxin bioproduction in root-nodules and roots of Lupinus luteus L. Acta Botanica Neerlandica, 19, 877–883.

    CAS  Google Scholar 

  82. Williams, P.M. & Sicardi de Mallorca, M. (1982) Abscisic acid and gibberellin-like substances in roots and root nodules of Glycine max. Plant and Soil, 65, 19–26.

    CAS  Google Scholar 

  83. Bottger, M. (1978) Levels of endogenous indole-3-acetic acid and abscisic acid during the course of the formation of lateral roots. Zeitschrift fur Pflanzenphysiologie, 86, 283–286.

    Google Scholar 

  84. Dullaart, J. (1970) The auxin content of root nodules and roots of Alnus glutinosa (L.) Vill. Journal of Experimental Botany, 21, 975–984.

    CAS  Google Scholar 

  85. Silver, W.S., Bendana, F.E. & Powell, R.D. (1966) Root nodule symbiosis. The relation of auxin to root geotropism in roots and nodules of non-legumes. Physiologia Plantarum, 19, 207–218.

    CAS  Google Scholar 

  86. Henson, I.E. & Wheeler, C.T. (1976) Hormones in plants bearing nitrogen-fixing root nodules: the distribution of cytokinins in Vicia faba L. The New Phytologist, 76, 433–439.

    CAS  Google Scholar 

  87. Henson, I.E. & Wheeler, C.T. (1977) Hormones in plants bearing nitrogen-fixing root nodules: gibberellin-like substances in Alnus glutinosa (L.). The New Phytologist, 78, 373–381.

    CAS  Google Scholar 

  88. Henson, I.E. & Wheeler, C.T (1977) Hormones in plants bearing nitrogen-fixing root nodules: cytokinin levels in roots and root nodules of some non-leguminous plants. Zeitschrift für Pflanzenphysiologie, 84, 179–182.

    CAS  Google Scholar 

  89. Bano, A., Watts, S.H., Hillman, J.S. & Wheeler, C.T. (1983) Abscisic acid and nitrogen fixation in Faba vulgaris (Vicia faba) and Alnus glutinosa. In Interactions between Nitrogen and Growth Regulators in the Control of Plant Development, Monograph 9 (ed M.B. Jackson), pp. 5–31. British Plant Growth Regulator Group, Wantage, U.K.

    Google Scholar 

  90. Watts, S.H., Wheeler, C.T. Hillman, J.R., Berrie, A.M.M., Crozier, A. & Math, V.B. (1983) Abscisic acid in the nodulated root system of Alnus glutinosa. The New Phytologist, 95, 203–208.

    CAS  Google Scholar 

  91. Dullaart, J. (1967) Quantitative estimation of indole-acetic acid and indole carboxylic acid in root nodules and roots of Lupinus luteus L. Acta Botanica Neerlandica, 16, 222–230.

    CAS  Google Scholar 

  92. Syõno, K., Newcomb, W. & Torrey, J.G. (1976) Cytokinin production in relation to the development of pea root nodules. Canadian Journal of Botany, 54, 2155–2162.

    Google Scholar 

  93. Syono, K. & Torrey, J.G. (1976) Identification of cytokinins in root nodules of the garden pea, Pisum sativum L. Plant Physiology, 57, 602–606.

    PubMed  CAS  Google Scholar 

  94. Wheeler, C.T., Watts, S.H. & Hillman, J.R. (1983) Changes in carbohydrates and nitrogenous compounds in the root nodules of Alnus glutinosa in relation to dormancy. The New Phytologist, 95, 209–218.

    CAS  Google Scholar 

  95. Rodriguez-Barrueco, C. (1966) Fixation of nitrogen in nodules of Alnus jorullensis. H.B. & K. Phyton (Buenos Aires) 23, 103–110.

    CAS  Google Scholar 

  96. Becking, J.H. (1968) Nitrogen fixation by non-leguminous plants. In Nitrogen in Soil. pp. 47–74. Dutch Nitrogenous Fertilizer Review No. 12.

    Google Scholar 

  97. Tjepkema, J. (1978) The role of oxygen diffusion from the shoots and nodule roots in nitrogen fixation by root nodules of Myrica gale. Canadian Journal of Botany, 56, 1365–1371.

    CAS  Google Scholar 

  98. Thimann, K.V. (1936) On the physiology of the formation of nodules on legume roots. Proceedings of the National Academy of Science (U.S.A.), 22, 511–514.

    CAS  Google Scholar 

  99. Kefford, N.P., Brockwell, J. & Zwar, J.A. (1960) The symbiotic synthesis of auxin by legumes and nodule bacteria and its role in nodule development. Australian Journal of Biological Sciences, 13, 456–467.

    CAS  Google Scholar 

  100. Nutman, P.S. (1951) Studies on the physiology of nodule formation. III. Experiments on the excision of root tips and nodules. Annals of Botany, 16, 79–101.

    Google Scholar 

  101. Dart, P.J. (1975) Legume root nodule initiation and development. In The Development and Function of Roots, (eds J.G. Torrey and D.T. Clarkson), pp. 467–506. Academic Press, London, New York, San Francisco.

    Google Scholar 

  102. Dart, P.J. (1977) Infection and development of leguminous nodules. In A Treatise on Dinitrogen Fixation. Section III. Biology, (eds R.W.F. Hardy and W.S. Silver), pp. 367–472. John Wiley & Son, New York.

    Google Scholar 

  103. Newcomb, W. (1981) Nodule morphogenesis and differentiation. International Review of Cytology. Supplement 13, 247–296.

    Google Scholar 

  104. Torrey, J.G. and S. Barrios (1969) Cytological studies on rhizobial nodule initiation in Pisum. Caryologia 22, 47–62.

    Google Scholar 

  105. Sprent, J.I. (1980) Root nodule anatomy, type of export product and evolutionary origin of some Leguminosae. Plant, Cell and Environment, 3, 35–43.

    CAS  Google Scholar 

  106. Roughley, R.J., Dart, P.J. & Day, J.M. (1976) The structure and development of Trifolium subterraneum L. root nodules. I: in plants grown in optimal root temperatures. Journal of Experimental Botany, 27, 431–440.

    Google Scholar 

  107. Libbenga, K.R. & Harkes, P. A. A. (1973) Initial proliferation of cortical cells in the formation of root nodules in Pisum sativum L. Planta, 144, 17–28.

    Google Scholar 

  108. Libbenga, K.R., Vanlren, F., Boyers, R.J. & Shraag-Lamers, M.F. (1973) The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta, 144, 29–39.

    Google Scholar 

  109. Badenoch-Jones, J., Summons, R.E., Djordjevic, M.A., Shine, J., Letham, D.S. & Rolfe, B.G. (1982) Mass spectrometric quantification of indole-3-acetic acid in Rhizobium culture supernatants: relation to root hair curling and nodule initiation. Applied Environmental Microbiology, 44, 275–280.

    CAS  Google Scholar 

  110. Wang, T.L., Wood, E.A. & Brewin, N.J. (1982) Growth regulators, Rhizobium and nodulation in peas. Planta, 155, 345–349.

    CAS  Google Scholar 

  111. Phillips, D.A. & Torrey, J.G. (1970) Cytokinin production by Rhizobium japonicum. Physiologia Plantarum, 23, 1057–1063.

    CAS  Google Scholar 

  112. Phillips, D.A. & Torrey, J.G. (1972) Studies on cytokinin production by Rhizobium. Plant Physiology, 49, 11–15.

    PubMed  CAS  Google Scholar 

  113. Azcon, R., Azcon, G.-De Quilar, C. & Barea, J.M. (1978) Effects of plant hormones present in bacterial cultures on the formation and responses of VA endomycorrhiza. The New Phytologist, 80, 359–364.

    CAS  Google Scholar 

  114. Katznelson, H. & Cole, S.E. (1965) Production of gibberellin-like substances by bacteria and actinomycetes. Canadian Journal of Microbiology, 11, 733–741.

    PubMed  CAS  Google Scholar 

  115. Brown, M.E. (1976) Role of Azotobacter paspali in association with Paspalum notatum. Journal Applied Bacteriology, 40, 341–348.

    Google Scholar 

  116. Trinick, M.J. (1976) symbiosis with a non-legume. In Proceedings 1st International Symposium on Nitrogen Fixation, (eds W.E. Newton and C.J. Nyman), pp. 507–517. Washington State University Press, Pullman.

    Google Scholar 

  117. Trinick, M.J. & Galbraith, J. (1976) Structure of root nodules formed by Rhizobium on the nonlegume Trema cannabina var. scabra. Archives of Microbiology, 108, 159–166.

    Google Scholar 

  118. Lancelle, S.A. & Torrey, J.G. (1984) Early development of Rhizobium-induced root nodules of Parasponia rigida. I. Infection and early nodule initiation. Protoplasma, 123, 26–37.

    Google Scholar 

  119. Lancelle, S.A. & Torrey, J.G. (1985) Early development of Rhizobium-induced root nodules of Parasponia rigida. II. Nodule morphogenesis and symbiotic development. Canadian Journal of Botany, 63, 25–35.

    Google Scholar 

  120. Chandler, M.R. (1978) Some observations on infection of Arachis hypogaea L. by Rhizobium. Journal of Experimental Botany, 29, 749–755.

    Google Scholar 

  121. Chandler, M.R., Date, R.A. & Roughley, R.J. (1982) Infection and root-nodule development in Stylosanthes species by Rhizobium. Journal of Experimental Botany, 33, 47–57.

    Google Scholar 

  122. Arora, N., Skoog, F. & Allen, O.N. (1959) Kinetin-induced pseudonodules on tobacco roots. American Journal of Botany, 46, 610–614.

    CAS  Google Scholar 

  123. Rodriguez-Barrueco, C. & De Castro, F. (1974) Cytokinin-induced pseudonodules on Alnus glutinosa. Physiologia Plantarum, 29, 277–280.

    Google Scholar 

  124. Dell, B., Kuo, J. & Thomson, G.J. (1980) Development of proteoid roots in Hakea obliqua R. Br. (Porteaceae) grown in water culture. Australian Journal of Botany, 28, 27–37.

    Google Scholar 

  125. Purnell, H.M. (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Australian Journal of Botany, 8, 38–50.

    Google Scholar 

  126. Malajczuk, N. & Bowen, G.D. (1974) Proteoid roots are microbially induced. Nature, 251, 316–317.

    CAS  Google Scholar 

  127. Lamont, B.B. & McComb, A.J. (1974) Soil micro-organisms and the formation of proteoid roots. Australian Journal of Botany, 22, 681–688.

    Google Scholar 

  128. Lamont, B. (1981) Specialized roots of non-symbiotic origin in heathlands. In Heathlands and Related Shrublands of the World. B. Analytical Studies, (ed R.L. Specht), pp. 183–195. Elsevier, Amsterdam.

    Google Scholar 

  129. Lamont, B. (1976) The effects of seasonality and waterlogging on the root systems of a number of Hakea species. Australian Journal of Botany, 24, 691–702.

    Google Scholar 

  130. Lamont, B. (1972) ‘Proteoid’ roots in the legume Viminaria juncea. Search, 3, 90–91.

    Google Scholar 

  131. Trinick, M.J. (1977) Vesicular-arbuscular infection and soil phosphorus utilization in Lupinus. The New Phytologist, 78, 297–304.

    CAS  Google Scholar 

  132. Walker, B.A., Pate, J.S. & Kuo, J. (1983) Nitrogen fixation by nodulated roots of Viminaria juncea (Schrad. & Wendl.) Hoffmans (Fabaceae) when submerged in water. Australian Journal of Plant Physiology, 10, 409–421.

    CAS  Google Scholar 

  133. Diem, J.G. Gueye, I., Gianinazzi-Pearson, V., Fortin, J.A. and Dommergues, F.R. (1981) Ecology of VA mycorrhizae in the tropics: the semi-arid zone of Senegal. Acta Oecologia/ Oecologia Plantarum 2, 53–62.

    Google Scholar 

  134. Dobereiner, J. & Day, J. (1976) Associative symbiosis in tropical grasses: characterization of micro-organisms and dinitrogen fixing sites. In Proceedings of the First International Symposium on Nitrogen Fixation, (eds W.E. Newton and C.J. Nyman), pp. 518–538. Washington State University Press, Pullman.

    Google Scholar 

  135. Dobereiner, J., Burris, R.H. & Hollaender, H. (1978) Limitations and Potentials for Biological Nitrogen Fixation in the Tropics. Plenum Press, New York.

    Google Scholar 

  136. Stewart, W.D.P., Rowell, P. & Lockhart, C.M. (1979) Associations of nitrogen-fixing prokaryotes with higher and lower plants. In Nitrogen Assimilation of Plants (eds E.J. Hewitt and C.V. Cutting), pp. 45–66. Academic Press, London, New York, San Francisco.

    Google Scholar 

  137. Barea, J.M. & Brown, M.E. (1974) Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. Journal of Applied Bacteriology, 37, 583–593.

    PubMed  CAS  Google Scholar 

  138. Kloepper, J.W., Leong, J., Teintze, H. & Schroth, M.N. (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 286, 885–886.

    CAS  Google Scholar 

  139. Schroth, M.N. & Hancock, J.G. (1982) Disease-suppressive soil and root colonizing bacteria. Science, 216, 1376–1381.

    PubMed  CAS  Google Scholar 

  140. Tepfer, D.A. & Tempé, J. (1981) Production d’agropine par des racines forméers sous l’action d’Agrobacterium rhizogenes souche A4. Comptes Rendus des séances de l’Academie des Sciences, Paris, 292, 153–156.

    CAS  Google Scholar 

  141. Tepfer, D. (1983) The potential uses of Agrobacterium rhizogenes in the genetic engineering of higher plants: Nature got there first. In Genetic Engineering in Eurkaryotes (eds P.F. Lurquin and A. Kleinhofs), pp. 153–164. Plenum Press, New York.

    Google Scholar 

  142. Tepfer, D. (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell, 37, 959–967.

    PubMed  CAS  Google Scholar 

  143. Chilton, M.-D., Tepfer, D.A., Petit, A., David, C., Casse-Delbart, F. & Tempé, J. (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature, 295, 432–434.

    CAS  Google Scholar 

  144. Schell, J. (1975) The role of plasmids in crown gall formation by A. tumefaciens. In Genetic Manipulations with Plant Materials, (ed L. Ledoux), pp. 163–181. Plenum Press, New York.

    Google Scholar 

  145. Chilton, M.D., Drummond, H.J., Merlo, D.J., Sciaky, D., Montoya, A.L., Gordon, M.P. & Nester, E.W. (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crows gall tumorigenesis. Cell, 11, 263–271.

    PubMed  CAS  Google Scholar 

  146. Liu, S.T., & Kado, C.I. (1977) Indoleacetic acid production: a plasmid function of Agrobacterium tumefaciens C 58. Biochemical Biophysical Research Communications. 90, 171–178.

    Google Scholar 

  147. Liu, S.-T., Perry, K.L., Schardl, C.L. & Kado, C.I. (1982) Agrobacterium indoleacetic acid gene is required for crown gall oncogenesis. Proceedings of the National Academy of Sciences (U.S.A.). 79, 2812–2816.

    CAS  Google Scholar 

  148. Nester, E.W. Gordon, M.P., Amasino, R.M. & Yanofsky, M.F. (1984) Crown gall: A molecular and physiological analysis. Annual Review of Plant Physiology 35, 387–413.

    CAS  Google Scholar 

  149. Long, S.R., Buikema, W.J. & Ausubel, F.M. (1982) Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod-mutants. Nature, 298, 485–488.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Torrey, J.G. (1986). Endogenous and exogenous influences on the regulation of lateral root formation. In: Jackson, M.B. (eds) New Root Formation in Plants and Cuttings. Developments in Plant and Soil Sciences, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4358-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4358-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8438-3

  • Online ISBN: 978-94-009-4358-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics