Skip to main content

Mechanics of Brittle Cracking of Crystal Lattices and Interfaces

  • Chapter
Chemistry and Physics of Fracture

Part of the book series: NATO ASI Series ((NSSE,volume 130))

Abstract

This is a review of some concepts in the mechanics of fracture appropriate to interpreting atomistically brittle modes of cracking of crystal lattices and of interfaces between crystalline phases, especially in solids which are normally, or potentially, ductile. Crack tip modelling is first discussed based on elastic-brittle concepts, assuming either that there is no near-tip dislocation activity or, for the time being, neglecting it. That discussion brings out the importance of the Griffith condition and its generalization to a cracking interface (e.g., an embrittled grain boundary), and includes an account of the thermodynamics of interfacial decohesion in presence of (possibly embrittling) segregants. It is suggested that the phenomenology of grain boundary embrittlement by P and Sn in Fe, and of “cohesion enhancement” by C, can be at least partly understood as an effect of the various segregants on altering the work necessary to separate an interface against atomic cohesive forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics (Oxford, 1985 ).

    Google Scholar 

  2. L.B. Freund and J.W. Hutchinson, J. Mech. Phys. Solids, 33, 169 (1985); L.B. Freund, J.W. Hutchinson and P.S. Lam, Eng. Fracture Mech, 23, 119 (1986).

    Google Scholar 

  3. J.W. Willis, J. Mech. Phys. Solids, 19, 353 (1971); D.L. Clements, Int. J. Eng. Sci., 9, 256 (1971).

    Article  Google Scholar 

  4. P.M. Anderson, Ductile and Brittle Crack Tip Response (Ph.D. Dissertation, Harvard, 1986 ).

    Google Scholar 

  5. A.N. Stroh, Phil Mag., 2, 625 (1958); D.M. Barnett and R.J. Asaro, J. Mech. Phys. Solids, 20, 353 (1972).

    Article  Google Scholar 

  6. R. Thomson, Atomistics of Fracture, 167 (Plenum, ed. Latanision and Pickens, 1983) and Solid State Physics, 39, 1 (1986); B.R. Lawn and T.R. Wilshaw, Fracture of Brittle Solids (Cambridge, 1975 ).

    Google Scholar 

  7. J.R. Rice, J. Mech. Phys. Solids, 26, 61 (1978) and Proc. 8th U.S. Nat. Congr. Appl. Mech., 191 ( Western Periodicals, ed. Kelly, 1979 ).

    Google Scholar 

  8. G.P. Cherepanov, Appl. Math. Mech. (transl. PMM), 21, 476 (1967); J.R. Rice, Fracture: An Advanced Treatise, 2, 191 (Academic, ed. Liebowitz, 1968) and J. Appl. Mech., 25., 379 (1968); J.D. Eshelby, Inelastic Behavior of Solids, 77 (McGraw Hill, ed. Kanninen et al, 1970 ).

    Google Scholar 

  9. J.R. Rice, Effect of Hydrogen on Behavior of Materials, 455 (TMS-AIME, ed. Thompson and Bernstein, 1976); R.J. Asaro, Phil. Trans. Roy. Soc. London, A295., 150 (1980); J.P. Hirth and J.R. Rice, Met. Trans., 11A, 1502 (1980).

    Google Scholar 

  10. G. Tauber and H.J. Grabke, Ber. Bunsenges Phys. Chem., £2, 298 (1978); H. Erhart and H.J. Grabke, Metal Sei., 15, 401 (1981); H. Hänsel, L. Stratmann, H. Keller and H.J. Grabke, Acta Met., 33, 659 (1985); H.J. Grabke, presentation at 1986 NATO Conf. on Phys. and Chem. of Fracture.

    Google Scholar 

  11. M.E. Eberhart, K.H. Johnson, R.P. Messner and C.L. Briant, Atomistics of Fracture, 255 ( Plenum, ed. Latanision and Pickens, 1983 ).

    Google Scholar 

  12. K. Tatsumi, N. Okumura and S. Funaki, Grain Boundary Structure and Related Phenomena, Supplement to Trans. Japan Inst. Metals, 427 (1986).

    Google Scholar 

  13. C.L. White, R.A. Padgett, C.T. Liu and S.M. Yalisov, Scripta Met., 18, 1417 (1984); C.T. Liu, C.L. White and J.A. Horton, Acta Met., 33, 213 (1985); C.L. White, J. Vac. Sei. Technol., A4, 1633 (1986).

    Google Scholar 

  14. a) A. Kelly, W. Tyson and A. Cottrell, Phil. Mag., 15, 567 (1967); (b) J.R. Rice and R. Thomson, Phil. Mag. 29, 73 (1974); (c) D.D. Mason, Phil. Mag., 39, 455 (1979); (d) T. Yokobori, A.T. Yokobori Jr. and A. Kamei, Int. J. Fracture, 11, 781 (1975) and 12, 519 (1976); (e) S.M. Ohr, Mat. Sci. Eng., 72, 1 (1985); (f) M.P. Seah and D. Hondros, Atomistics of Fracture, 855 (Plenum, ed. Latanision and Pickens, 1983); (g) J.E. Sinclair and M.W. Finnis, ibid, 1047; (h) I.H. Lin and R. Thomson, Acta Met., 34, 187 (1986).

    Google Scholar 

  15. M.S. Daw and M.I. Baskes, Phys. Rev. Lett., 1285 (1983) and Phys. Rev. B, 29, 6443 (1984); M.I. Baskes, Mat. Res. Soc. Bull, 9, no. 4, 14 (1986).

    Google Scholar 

  16. a) M.L. Jokl, V. Vitek and C.J. McMahon Jr., Acta Met., 28, 1479 (1980); (b) J.F. Knott, Atomistics of Fracture, 209 (Plenum, ed. Latanision and Pickens, 1983); (c) P. Haasen, ibid, 707; (d) K. Sieradzki and R.C. Newman, Phil Mag., A51, 95 (1985), and R.C. Newman and K. Sieradzki, Scripta Met., 17, 621 (1983); (e) I.H. Lin and R.M. Thomson, J. Mat. Res., 1, 73 (1986).

    Google Scholar 

  17. E.W. Hart, Int. J. Solids Structures, 16, 807 (1980).

    Article  Google Scholar 

  18. J.R. Rice, Fundamentals of Deformation and Fracture, 33 (Cambridge, ed. Bilby et al, 1985 ).

    Google Scholar 

  19. (a) P.M. Anderson and J.R. Rice, Scripta Met.,20,1467 (1986); (b) J.S. Wang, P.M. Anderson and J.R. Rice,in press, Proc. 5th Int. Conf. on Mechanical Behavior of Materials, Beijing, 1987 (Pergamon); (c) P.M. Anderson and J.R. Rice, manuscript, 1986.

    Google Scholar 

  20. F. Prinz, H.O.K. Kirchner and G. Schoek, Phil, Mag., A38 321 (1978); F. Prinz, A. Korner and H.O.K. Kirchner, Phil. Mag. Ml, 441 (1983).

    Google Scholar 

  21. H. Vehoff and P. Neumann, Acta Met., 27, 915 (1979) and 28 265 (1980); H. Vehoff, W. Rothe and P. Neumann, Proc. 5th Int. Cong. Fracture, 1, 265 (1981); H. Vehoff and W.Rothe, Acta Met., 11, 1781 (1983).

    Article  Google Scholar 

  22. J.R. Rice and R. Nikolic, J. Mech. Phys. Solids, 33, 595 (1985).

    Google Scholar 

  23. J.R. Rice, Mechanics of Solids, 539 (Pergamon, ed. Hopkins and Sewell, 1982) and J. Mech. Phys. Solids, 21, 63 (1973); W.J. Drugan, J.R. Rice and T.L. Sham, J. Mech. Phys. Solids, 30, 447 (1982) and 31, 191 (1983).

    Google Scholar 

  24. A.S. Tetelman and W.D. Robertson, Acta Met., 11, 415 (1963).

    Article  CAS  Google Scholar 

  25. P.A. Mataga, High Strain Rate Crack Growth (Ph.D. Dissertation, Harvard, 1986 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Rice, J.R. (1987). Mechanics of Brittle Cracking of Crystal Lattices and Interfaces. In: Latanision, R.M., Jones, R.H. (eds) Chemistry and Physics of Fracture. NATO ASI Series, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3665-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3665-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8140-5

  • Online ISBN: 978-94-009-3665-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics