Skip to main content

Practical Aspects of Testing Circumferential Notch Specimens at High Temperature

  • Chapter
Techniques for Multiaxial Creep Testing

Abstract

Notch testing evolved as a means of assessing the performance of materials subjected to a stress concentration equivalent to those typically encountered in engineering components.Turbine bolting failures in Germany in the 1930s promoted the idea of the use of notch testing (Kuntze, 1932). The present British Standard notch, BS3500, has a notch angle of 60°, being the same as that of ISO thread profiles, BS3643. The British Standard notch evolved from the desire to test specimens having a notch with an elastic stress concentration factor, Kt = 3′9, which was similar to that encountered in typical engineering components. Values of elastic stress concentration factors for a variety of notches and grooves have been tabulated in graphical form by Peterson (1953), based on the original work of Neuber (1937). Semi-circular circumferential notch geometries were proposed by Bridgman (1952) for generating a triaxial stress state and have been further analysed under steady state creep conditions by Hayhurst and Henderson (1977) and under creep damage rupture conditions by Hayhurst, Leckie and Morrison (1978). The methods of stress analysis of such notches are reviewed in Chapter 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Al-Faddagh, K. D., Webster, G. A. and Dyson, B. F. (1984) Influence of state of stress on creep failure of 2 1/2Cr, 1%Mo steel. Mechanical Behaviour of Materials IV, J. Carlsson and N. G. Ohlson (Eds), Pergamon Press, Oxford, pp. 289–95.

    Google Scholar 

  • Astm E292 (1983) Conducting time-for-rupture notch tension tests of materials.

    Google Scholar 

  • Astm E1012 (1984) Verification of specimen alignment under tensile loading.

    Google Scholar 

  • Beauchamp, D. J. and Ellison, E. G. (1982) A rig for controlled cyclic strain and temperature testing. J. Strain Analysis, 17 (1), 45–52.

    Article  Google Scholar 

  • Bressers, J. (1982) Axiality of loading. Measurement of High Temperature Mechanical Properties of Materials, M. S. Loveday, M. F. Day and B. F. Dyson (Eds), HMSO, London, pp. 278–95.

    Google Scholar 

  • Bridgman, P. (1952) Large Plastic Flow and Fracture. McGraw-Hill, New York.

    Google Scholar 

  • Bs3643 (1981) ISO metric screw threads, British Standards Institution, London.

    Google Scholar 

  • Bs3846 (1970) Methods for the calibration and grading of extensometers for testing of metals, British Standards Institution, London.

    Google Scholar 

  • Bs3500 (1969) Methods for creep and rupture testing of metals, British Standards Institution, London.

    Google Scholar 

  • Colclough, A. R. (1982) Methods of practical thermometry in the range 0 to 3000°C—a survey. Measurement of High Temperature Mechanical Properties of Materials, M. S. Loveday, M. F. Day and B. F. Dyson (Eds), HMSO, London, pp. 58–90.

    Google Scholar 

  • Day, M. F. and Harrison, G. (1982) Design and calibration of extensometers and transducers. Measurement of High Temperature and Mechanical Properties of Materials, M. S. Loveday, M. F. Day and B. F. Dyson (Eds), HMSO, London, pp. 225–40.

    Google Scholar 

  • Desvaux, M. P. E. (1982) The practical realization of temperature measurement standards in high temperature mechanical testing. Measurement of High Temperature Mechanical Properties of Materials, M. S. Loveday, M. F. Day and B. F. Dyson (Eds), HMSO, London, pp. 91–112.

    Google Scholar 

  • Din50119 (1952) Testing of materials: creep test, Deutsches Inst, fur Normung, Berlin.

    Google Scholar 

  • Dyson, B. F. and Loveday, M. S. (1981) Creep fracture in Nimonic 80A under triaxial tensile stressing. Creep in Structures, 3rd IUTAM Symposium, A.R.S. Ponter and D. R. Hayhurst (Eds), Springer-Verlag, Berlin-New York, pp. 406–21.

    Google Scholar 

  • Ellison, E. G. and Lohr, R. D. (1985) The extensometer interface. Techniques for High Temperature Fatigue Testing, G. Sumner and V. B. Livesey (Eds), Elsevier Applied Science, London, pp. 1–28.

    Google Scholar 

  • Forrest, P. G. (1962) Fatigue of Metals, Pergamon Press, Oxford.

    Google Scholar 

  • Furse, J. E. and Loveday, M. S. (1981) Improvements in or relating to extensometers. UK Patent GB2088065B, Patent published 1984.

    Google Scholar 

  • Guest, J. C. (1982) Standards in elevated temperature tensile and uniaxial creep testing. Measurement of High Temperature Mechanical Properties of Materials, M. S. Loveday, M. F. Day and B. F. Dyson (Eds), HMSO, London, pp. 23–31.

    Google Scholar 

  • Hales, R. and Walters, D. J. (1982) Measurement of strain in high temperature fatigue. Measurement of High Temperature Mechanical Properties of Materials, M. S. Loveday, M. F. Day and B. F. Dyson (Eds), HMSO, London, pp. 241–54.

    Google Scholar 

  • Hayhurst, D. R. and Henderson, J. T. (1977) Creep stress redistribution in notched bars. Int. J. Mech. Sci., 19, 133–46.

    Article  Google Scholar 

  • Hayhurst, D. R., Leckie, F. A. and Morrison, C. J. (1978) Creep rupture of notched bars. Proc. R. Soc. A, 360, 243–64.

    Article  Google Scholar 

  • Hayhurst, D. R., Dimmer, P. R. and Morrison, C. J. (1984) Development of continuum damage in the creep rupture of notched bars. Phil. Trans. R. Soc. Lond., A311, 103–29.

    Article  Google Scholar 

  • Hickson, V. M. (1959) Replica technique for measuring static strains. J. Mech. Eng. Sci., 1 (2), 171–83.

    Article  Google Scholar 

  • Hirschberg, M. H. (1969) A low cycle fatigue testing facility. ASTM STP 465, 67–86.

    Google Scholar 

  • Jones, M. H., Shannon, J. L. and Brown, W. F. (1957) Influence of notch preparation and eccentricity of load on the notch rupture life. Proc. ASTM, 57, 833–53.

    Google Scholar 

  • Kuntze, W. (1932) The practical procedure for notch bar tensile tests. Metallwirtschaft, 11, 179.

    Google Scholar 

  • Levy, J. C. and Barody, I.I. (1968) Poisson’s ratio during creep and recovery. J. Inst. Met., 96, 281–84.

    Google Scholar 

  • Lohr, R. D. (1982) The role of extensometry in modern materials testing. Proc. Transducer Tempcon82, Wembley, UK.

    Google Scholar 

  • Loveday, M. S. (1985) High temperature axial extensometers: standards, calib-ration and usage. Proc. Conf. on High Temperature Strain Measurements, JRC, Petten.

    Google Scholar 

  • Loveday, M. S. and Dyson, B. F. (1979) Creep deformation and cavitation damage in Nimonic 80A, under a triaxial tensile stress. Mechanical Behaviour of Metals II. Proc. ICM3, K. J. Miller and R. F. Smith ( Eds ), Pergamon Press, Oxford.

    Google Scholar 

  • Loveday, M. S. and King, B. (1982) Uniaxial testing apparatus and test pieces. Measurement of High Temperature Mechanical Properties of Materials, M. S. Loveday, M. F. Day and B. F. Dyson (Eds), HMSO, London, pp. 128–157.

    Google Scholar 

  • Marshall, P. (1982) Specimen environment. Measurement of High Temperature Mechanical Properties of Materials, M. S. Loveday, M. F. Day, B. F. Dyson (Eds), HMSO, London, pp. 296–321.

    Google Scholar 

  • Morrison, C. J. and Hayhurst, D. R. (1977) Private communication, Leicester University.

    Google Scholar 

  • Neuber, H. (1937) Kerbspannungslehre, Springer, Berlin. Translation: Theory of Notch Stresses, J. Edwards, Ann Arbor, Michigan 1946.

    Google Scholar 

  • Peterson, R. E. (1953) Stress Concentration Design Factors. John Wiley, New York.

    Google Scholar 

  • Siegfried, W. (1951) Contribution a la determination des risques de rupture lors du fluage dans un état de tension a plusiers dimensions après ecrouissage prealable. Revue de Metallurgies XLVIII (6), 413–33.

    Google Scholar 

  • Slot, T., Stentz, R. H. and Behrling, J. T. (1969) Controlled strain testing procedures. ASTM STP 465, 100–28.

    Google Scholar 

  • Smith, A. I. and Murray, D. (1963) Literature survey on notch rupture testing. Unpublished work, NEL.

    Google Scholar 

  • Sumner, G. (1968) A diametral extensometer for elevated temperature high strain fatigue. J. Phys. E, 1, 652–4.

    Article  Google Scholar 

  • Sumner, G. (1985) Heating methods and grips. Techniques for High Temperature Fatigue Testing, G. Sumner and V. B. Livesey (Eds), Elsevier Applied Science, London, pp. 71–96.

    Google Scholar 

  • Sumner, G. and Livesey, V. B. (1985) Techniques for High Temperature Fatigue Testing. Elsevier Applied Science, London.

    Google Scholar 

  • Wu, D., Christian, E. M. and Ellison, E. G. (1984) Influence of constraint on creep stress distribution in notched bars. J. Strain Analysis, 19 (4), 209–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Loveday, M.S. (1986). Practical Aspects of Testing Circumferential Notch Specimens at High Temperature. In: Gooch, D.J., How, I.M. (eds) Techniques for Multiaxial Creep Testing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3415-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3415-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8027-9

  • Online ISBN: 978-94-009-3415-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics