Skip to main content

Large Scale Separation and Isolation of Proteins

  • Chapter
Food Biotechnology—1

Abstract

Proteins are a family of complex biological macromolecules produced by and found only in plants and microbial and animal cell tissues. They perform a variety of tasks in living systems, depending on their amino acid content, structure and association with atoms and other molecules of biological origin. Over the centuries, proteins have been recovered, usually in very crude forms, from animal and plant tissues and used for mainly domestic and food processing applications. In the last 20 years or so much attention has been focussed on their production and usage as essential dietary supplements, their potential for the conversion of non-oil feedstocks such as carbohydrates, their potential for modifying existing food products and, in very pure form, their health care applications. Consequently the following usage categories may be identified:

  1. (1)

    The utilisation of their amino acid content to provide the essential and supplementary dietary components of human and animal foods.

  2. (2)

    The application of their useful physical properties, such as elasticity, water retention and adhesion, in technologies such as baking, cooking and adhesives manufacture.

  3. (3)

    The use of their specific catalytic properties to interact with other biological and synthetic organic chemicals and bring about cleavage, additive or spatial molecular changes.

  4. (4)

    The use of the specific biologically active properties of some discrete protein molecules in aqueous solution as diagnostic and therapeutic agents in human and animal health applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Perutz, M., The birth of protein engineering, New Scientist, 13th June (1985).

    Google Scholar 

  2. Wood, W. B., Wilson, J. H., Benbow, R. M. and Hood, L. E., Biochemistry: A Problems Approach, Benjamin/Cummings Publishing Company, Menlo Park, California, 1981.

    Google Scholar 

  3. Kirstler, P. and Friedli, H., Ethanol precipitation, in Methods of Plasma Protein Fractionation, Curling, J. M. (Ed.), Academic Press, London, 1980.

    Google Scholar 

  4. Bell, D. J., Hoare, M. and Dunnill, P., The formation of protein precipitates and their centrifugal recovery, Adv. Biochem. Eng. Biotechnol., 26, 1–72 (1983).

    Google Scholar 

  5. Hoare, M. and Dunnill, P., Precipitation of food proteins and their recovery by centrifuging and ultrafiltration, J. Chem. TechnoL Biotechnol., 34B, 199– 205 (1984).

    Google Scholar 

  6. Twineham, M., Hoare, M. and Bell, D. J., The effect of protein concentration on the break-up of protein precipitate by exposure to shear, Chem. Eng. Sei., 39, 509–13 (1984).

    Article  Google Scholar 

  7. Hao, T. L., Ingham, K. C. and Wickerhauser, M., Fractional precipitation of proteins with polyethylene glycol, in Methods of Plasma Protein Fractionation, Curling, J. M. (Ed.), Academic Press, London, 1980.

    Google Scholar 

  8. Johnson, A. J., Macdonald, V. E., Semer, M., Fields, J. E., Schick, J., Lewis, C. and Brind, J., Plasma protein fractionation using solid phase polyelectrolytes, in Methods of Plasma Protein Fractionation, Curling, J. M. (Ed.), Academic Press, London, 1980.

    Google Scholar 

  9. Steinbeck, M., Protein fractionation by ammonium sulphate, rivanol and caprylic acid precipitation, in Methods of Plasma Protein Fractionation, Curling, J. M. (Ed.), Academic Press, London, 1980.

    Google Scholar 

  10. Foster, P. R., Dickson, A. J., Stenhouse, A. and Walker, E. P., Sensors and Control in Protein Fractionation Processes, 1st Edn, Inst. Chem. Eng. Symposium Series No. 94, Multi-Stream’85, Pergamon Press, London, 1985.

    Google Scholar 

  11. Foster, P. R. and Watt, J. G., The CSVM fractionation process, in Methods of Plasma Protein Fractionation, Curling, J. M. (Ed.), Academic Press, London, 1980.

    Google Scholar 

  12. Watson, J. S., Street, G. and Cumming, R. H., Autolysis: A Feasible Method for Intracellular Protein Release, private communication, Teeside Polytechnic, Middlesbrough, 1985.

    Google Scholar 

  13. Limon-Lason, J., Hoare, M., Orsborn, C. B. and Doyle, D. J., Reactor properties of a high speed bead mill for microbial cell rupture, Biotechnol. Bioeng., 21, 745–74 (1979).

    Article  Google Scholar 

  14. Marffy, F. and Kula, M. R., Enzyme yields from cells of brewers yeast disrupted by treatment in a horizontal disintegrator, Biotechnol. Bioeng., 16, 623–34 (1974).

    Article  Google Scholar 

  15. Follows, M., Hetherington, P. J., Dunnill, P. and Lilly, M. D., Release of protein from Baker’s Yeast (saccharomyces cerevisiae) by disruption in an industrial homogeniser, Trans. Instn Chem. Engrs, 49, 142–8 (1971).

    Google Scholar 

  16. Erickson, R. A., Disk stack centrifuges in biotechnology, Chemical Engineering Progress, 5–4, December (1984).

    Google Scholar 

  17. Brunner, K. H., Separators in Biotechnology, Westfalia Company Publication, Oelde, West Germany.

    Google Scholar 

  18. Brunner, K. H., Van Hemert, P., Kohlstette, W. and Tiesjema, R. H., Continuous Centrifugation in Large Scale Vaccine Production, Westfalia Separator Publication, Oelde, West Germany, 1984.

    Google Scholar 

  19. Westfalia Centrifuge Company, New Centrifuge for Separating Human Blood Plasma, press release, Interchemie, Paris, 1983.

    Google Scholar 

  20. Hemfort, H. and Kohlestette, W., Centrifugal Clarifiers and Decanters for Biotechnology, Westfalia Separator Publication, Oelde, West Germany, 1984.

    Google Scholar 

  21. Svarovsky, L. (Ed.), Solid-Liquid Separation, 2nd Edn, Butterworths, London, 1981.

    Google Scholar 

  22. Coulson, J. M. and Richardson, J. F., Chemical Engineering, Vol. 1, Pergamon Press, Oxford, 1963.

    Google Scholar 

  23. Crane, A. P., Mycelia Removal in Penicillin Production, Pall Filtration Ltd, Portsmouth, UK, 1984.

    Google Scholar 

  24. O′Sullivan, T. J., Epstein, A. C., Korchin, S. R. and Beaton, N. C., Applications of ultrafiltration in biotechnology, Chemical Engineering Progress, 68–75, January (1984).

    Google Scholar 

  25. Brocklebank, M. P., Usage and role of membranes in bio-processes, Processing, 27–31, April (1985).

    Google Scholar 

  26. Gutman, R. and Leaver, G., Membranes separate big from small in biotechnology, Process Eng., 37–40, June (1984).

    Google Scholar 

  27. Literature from APV Co., UK and SFEC Co., France.

    Google Scholar 

  28. Membrane literature from Wafilin BV, Hardenberg, The Netherlands.

    Google Scholar 

  29. Le, M. S., Spark, L. B. and Ward, P. S., The separation of aryl acylamidase by crossflow microfiltration and the significance of enzyme/cell debris interaction, Paper presented at IMTEC (International Membrane Technology Conference), Sydney, 1983.

    Google Scholar 

  30. Quirk, A. V. and Woodrow, J. R., Tangential flow filtration: a new method for the separation of bacterial enzymes from cell debris, Biotechnol. Lett., 5, 277–82 (1983).

    Article  Google Scholar 

  31. Vaks, B., Mony, Y., Pederson, J. U. and Horowitz, O., A semi-continuous process for the production of human interferon C from E. coli using tangential-flow microfiltration and immuno-affinity chromatography, Biotechnol. Lett., 6 (10), 621–6 (1984).

    Google Scholar 

  32. Damiano, D., Shin, C. S., Ju, N. H. and Wang, S. S., Performance, kinetics and substrate utilisation in a continuous yeast fermentation with cell recycle by ultrafiltration membranes, Appl. Microbial Technol., 21, 69–77 (1985).

    Google Scholar 

  33. Atkinson, B. and Mavituna, F., Biotechnology Handbook, Macmillan, London, 1983, pp. 993–5.

    Google Scholar 

  34. Mattiasson, B., Applications of aqueous two-phase extraction systems in biotechnology, Trends Biotechnol., 1, 16–20 (1983).

    Article  Google Scholar 

  35. Kula, M. R., Hustedt, H., Kroner, K. H. and Schiitte, H., New developments in large scale protein isolation processes, Proceedings of Biotech. 1983, On- Line Publications, London, 359–72, 1983.

    Google Scholar 

  36. Kroner, K. H., Schiitte, H., Stach, W. and Kula, M. R., Scale-up of formate dehydrogenase by partition, J. Chem. Technol. Biotechnol., 32, 130–7 (1982)

    Google Scholar 

  37. Fauquex, P.-F., Hustedt, H. and Kula, M. R., Phase equilibration in agitated vessels during extractive enzyme recovery, J. Chem. Technol. Biotechnol., 35B, 51–9 (1985).

    Article  Google Scholar 

  38. Janson, J. C., Large scale affinity purification: state of the art and future prospects, Trends Biotechnol., 2, 1–8 (1984).

    Article  Google Scholar 

  39. Flashel, E., Wandrey, C. and Kula, M. R., Ultrafiltration for the separation of biocatalysts, Adv. Biochem. Eng. Biotechnol., 26, 73–142 (1983).

    Google Scholar 

  40. Sweeney, M. J., Membrane based liquid separation systems, Chemical Engineering Progress, 32–5, January (1985).

    Google Scholar 

  41. Beaton, N. C. and Klinkowski, P. R., Industrial ultrafiltration design and application of diafiltration processes, J. Separ. Proc. Technol., 4(2), 1–10 (1983)

    Google Scholar 

  42. Skagins, K., Retrieving a needle from a haystack: isolation and purification of biological substances, Proceedings of Biotech 1984, On-Line Publications, London, 119–38.

    Google Scholar 

  43. Curling, J. M., Low, D. and Cooney, J. M., Downstream processing of fermentation products by chromatography, Proceedings Biotech 1984, On- Line Publications, London, 225–34.

    Google Scholar 

  44. Cooney, J. M., Chromatographic gel media for large scale protein purification, Bio Technology, 41–55, January (1984).

    Google Scholar 

  45. Janson, J. C. and Hedman, P., Large scale chromatography of proteins, Adv. Biochem. Eng., 25, 43–99 (1982).

    Google Scholar 

  46. Frej, A. K., Gustafsson, J. G. and Hedman, P., FPLC for monitoring microbial and mammalian cell cultures, Bio Technology, 777–81, September (1984).

    Google Scholar 

  47. Quirk, A. V., The work-up of fermentation products, in Bioprocessing in the ’80s, Inst. Chem. Eng. Conf., Southampton, 1983.

    Google Scholar 

  48. Berglof, J. and Cooney, J. M., Scale-up of laboratory systems for large scale chromatography, Proceedings of Biotech ’83, On-Line Publications, London, 833–42.

    Google Scholar 

  49. Miles, B. J. and Thompson, A. R., New inorganic materials for protein separation and recovery, Process Biochemistry, 11–16, May (1974).

    Google Scholar 

  50. Kent, C. A., Miles, B. J., Flaws, J. and Thompson, A. R., Biological process separations using inorganic adsorbents, in Bioprocessing in the ’80s, Inst. Chem. Eng. Conf., Southampton, 1983.

    Google Scholar 

  51. Macrosorb product range from Sterling Organics, Cramlington, Newcastle, England.

    Google Scholar 

  52. Stanker, L. H., VanderLaan, M. and Juarez-Sdlinas, H., One step purification of mouse monoclonal antibodies from ascites fluid by hydroxylapatite chromatography, J. Immunol. Methods, 76, 157–69 (1985).

    Article  Google Scholar 

  53. Atkinson, A., Bradford, P. A. and Selmes, I. P., Large scale preparation of chromatographic grade hydroxylapatite and its application in protein separation procedures, J. Appl. Chem. Biotechnol., 23, 517–29 (1973).

    Article  Google Scholar 

  54. Bruton, C. J., Large scale purification of enzymes, Phil. Trans. Roy. Soc., B300, 249–61 (1983).

    Article  Google Scholar 

  55. Janson, J. C., Large scale affinity purification: state of the art and future prospects, Trends Biotechno., 2 (2), 31–8 (1984).

    Article  Google Scholar 

  56. Van der Wiel, J. P., Van Brakel, J., Duine, J. A. and Wesselingh, J. A., Continuous purification of proteins in fluidised sorption columns, poster presentation, 1st International Meeting on Downstream Processing, Toulouse, February 1985.

    Google Scholar 

  57. Anon, Hydrophobic Chromatography for Hydrophilic Proteins, Pharmacia Fine Chemicals, Uppsala, Sweden, 1979.

    Google Scholar 

  58. Kato, Y., Kitamura, T. and Hashimoto, T., Operational variables in high performance hydrophobic interaction chromatography of proteins on TSK gel phenyl-5PW, J. Chromatog., 298, 407–18 (1984).

    Article  Google Scholar 

  59. Hedman, P., Gustafsson, J. G. and Frej, A. K., Protein recovery from unclarified cell homogenates, in Discovery and Isolation of Microbial Products, Verrall, M. S. (Ed.), SCI, Ellis Horwood, Chichester, 1985.

    Google Scholar 

  60. Scott, F., Stepping up to kg/hour production rates with HPLC, Process Eng., 26–31, February (1984).

    Google Scholar 

  61. Dwyer, J. L., Techniques for scale-up to process HPLC, Kemia-Kemi, 3, 247–51 (1985).

    Google Scholar 

  62. Dwyer, J. L., Scaling-up bio-product separation with high performance liquid chromatography, Bio Technology, 957–64, November (1984).

    Google Scholar 

  63. Di Bussolo, J. M., A practical introduction to reversed phase liquid chromatography of proteins and peptides, Int. Biotechnol. Lab., 2 (3), 14–27 (1984).

    Google Scholar 

  64. Lowe, C. R., New developments in downstream processing, J. Biotechnol., 1, 3–12 (1984).

    Article  Google Scholar 

  65. Hill, E. and Hirtenstein, M., Industrial affinity chromatography, in Advances in Biotechnology Processing, Vol. 1, Mizrah, A. and Van Wezel, A. (Eds), Allan R. Liss, New York, 1983, pp. 31–66.

    Google Scholar 

  66. Yang, Che-Ming and Tsao, G. T., Affinity chromatography, Adv. Biochem. Eng., 25, 19–42 (1982).

    Google Scholar 

  67. Yanchinski, S., Fermentec developing protein A process, Bio Technology, 667–8, August (1984).

    Google Scholar 

  68. Kopperschläger, G., Böhme, H. J. and Hofman, E., Cibacron Blue F3G-A and related dyes as ligands in affinity chromatography, Adv. Biochem. Eng., 25, 101–38 (1982).

    Google Scholar 

  69. Lowe, C. R. and Stead, C. V., The use of reactive dyestuffs in the isolation of proteins, in Discovery and Isolation of Microbial Products, Verrall, M. S. (Ed.), SCI, Ellis Horwood, Chichester, 1985.

    Google Scholar 

  70. Reed, P. B., Electrodialysis for the purification of protein solutions, Chemical Engineering Progress, 47–50, December (1984).

    Google Scholar 

  71. Commercial name ‘Biostream’, marketed by CJB (Developments), Portsmouth, UK.

    Google Scholar 

  72. Dickerson, C. H., Birch, J. R. and Cartwright, T., A novel rapid and continuous method for the resolution of cell dispersal activities in crude trypsin preparations, 3rd General Meeting of ES ACT, Oxford, 1979.

    Google Scholar 

  73. Recycling Iso-Electric Focusing (RIEF) system, Ionics Inc., Watertown, Massachusetts, USA.

    Google Scholar 

  74. Gehle, R. D. and Schügerl, K., Protein recovery by continuous flotation, App. Microbial Biotechnol., 20, 133–8 (1984).

    Google Scholar 

  75. Dunlop, E. H., Feiler, W. A. and Mattione, M. J., Magnetic separations in biotechnology, Biotechnol. Adv., 2, 63–74 (1984).

    Article  Google Scholar 

  76. Anon, Downstream protein recovery process stirs Sea Island bioengineers, Biotechnol Newswatch, 4, February 20 (1984).

    Google Scholar 

  77. Ledward, D. A. and Lawrie, R. A., Recovery and utilisation of by-product proteins of the meat industry, J. Chem. Technol. Biotechnol 34B, 223–8 (1984).

    Article  Google Scholar 

  78. Hopwood, A. P. and Rosen, G. D., Protein and fat recovery from effluents, Process Biochem., 15–17, March (1972).

    Google Scholar 

  79. Grant, R. A., Protein recovery as an effluent treatment process, Effluent and Water Treatment J., 616–21, December (1975).

    Google Scholar 

  80. Grant, R. A., Protein recovery from process effluents using ion exchange resins, Process Biochem., 11–14, February/March (1974).

    Google Scholar 

  81. Anon, Protein from waste, Food Manuf., 39, December (1984).

    Google Scholar 

  82. US Pat. 4,462,932, July 31 (1984).

    Google Scholar 

  83. Cheese Whey Concentration by Reverse Osmosis, PCI, Laverstoke Mill, Hampshire, England.

    Google Scholar 

  84. Darles, J. C., Molecular sieve separates protein from cheese whey, Chem. Eng., 114–15, July 24 (1972).

    Google Scholar 

  85. Howell, J. A., Ion exchange recovery of proteins, paper presented at Inst. Chem. Eng. meeting, Glasgow, November 21, 1985.

    Google Scholar 

  86. Anon, Costs for purification of sweet whey proteins, Pro Biotech (suppl. to Process Bio chem.), December (1984).

    Google Scholar 

  87. Bray, W. J., Leaf protein recovery, Chem. Eng., 76–7, January 22 (1973).

    Google Scholar 

  88. Anon, New protein route goes commercial in Hungary, Chem. Eng., 68C- D, December 10 (1973).

    Google Scholar 

  89. Anon, Recovery of protein from potato juice, Westfalia Separator Magazine, Oelde, West Germany.

    Google Scholar 

  90. Wafilin BV, Membrane filtration literature, Hardenberg, The Netherlands.

    Google Scholar 

  91. Klausner, A., Adjustment in the blood fraction market, Bio Technology, 3 (2), 119–25 (1985).

    Google Scholar 

  92. Winkler, M. A., Wiseman, A. and Sadler, A. M., Polyethylene glycol precipitation of a microsomal enzyme, in Discovery and Isolation of Microbial Products, Verrall, M. S. (Ed.), SCI, Ellis Horwood, Chichester, 1985.

    Google Scholar 

  93. Curling, J. M., Albumin purification by ion exchange chromatography, in Methods of Plasma Protein Fractionation, Curling, J. M. (Ed.), Academic Press, London, 1980.

    Google Scholar 

  94. Eketorp, R., Affinity chromatography in industrial fractionation of human plasma, in Methods of Plasma Protein Fractionation, Curling, J. M. (Ed.), Academic Press, London, 1980.

    Google Scholar 

  95. Tayot, J. L., Tardy, M. and Gattel, P., Ion exchange and affinity chromatography on silica derivatives, in Methods of Plasma Protein Fractionation, Curling, J. M. (Ed.), Academic Press, London, 1980.

    Google Scholar 

  96. Randerson, D., Hybridoma technology and the process engineer, Chem. Engnr, 12–15, December (1984).

    Google Scholar 

  97. Thompson, A. R., Recent developments in protein recovery and purification, J. Chem. Technol. Biotechnol., 34B, 190–8 (1984).

    Article  Google Scholar 

  98. Dunnill, P., Trends in downstream processing of proteins and enzymes, Process Bio chem., 9–13, October (1983).

    Google Scholar 

  99. Fish, N. M. and Lilly, M. D., The interactions between fermentation and protein recovery, Bio Technology, 623–7, July (1984).

    Google Scholar 

  100. Rosen, C. G., Primary separation steps in fermentation processes, Proceedings of Biotech ’83, On-Line Publications, London, pp. 201–23, 1983.

    Google Scholar 

  101. Hedman, P., Interfacing fermentation with downstream processing, Proceedings of Biotech ’83, On-Line Publications, London, pp. 343–58, 1983.

    Google Scholar 

  102. Brunt, J. V., Scale-up: the next hurdle, Bio Technology, 3 (2), 419–23 (1985).

    Google Scholar 

  103. Higgins, J., Lewis, D. J., Daly, W. H., Morqueira, F. G., Dunnill, P. and Lilly, M. D., Investigation of the unit operations involved in the continuous flow isolation of β-galactosidase from Escherichia coli, Biotechnol. Bioeng., 20, 159–82 (1978).

    Google Scholar 

  104. Foods, non-conventional, in Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Edn, Vol. 11, Wiley, 1980.

    Google Scholar 

  105. Rimmington, A., Single cell protein: the Soviet revolution, New Scientist, 27 June (1985).

    Google Scholar 

  106. Romantsehuk, H. and Lehtomaki, M., Operational experience of first full scale Pekilo process SCP: mill application, Process Biochem., 13 (3), 16–17 (1978).

    Google Scholar 

  107. Romanschuk, H., The Pekilo process: protein from spent sulphite liquor, in Single Cell Protein, II, Tannenbaum, S. R. and Wang, D. I. C. (Eds), MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  108. Anon, A better way to make proteins from whey?, Chem. Engng., 36C-D, March (1978).

    Google Scholar 

  109. McNairney, J., Modification of a novel protein product, J. Chem. Technol. Biotechnol., 34B, 206–14 (1984).

    Article  Google Scholar 

  110. Atkinson, B. and Sainter, P., Technology Forecasting for Downstream Processing, final report, FAST Programme Contract FST/C/020/80/UK/H, 1982.

    Google Scholar 

  111. Edelman, J., Fewel, A. and Solomons, G. L., Myco-protein: the food of the future, Food Manuf., 49–56, October (1984).

    Google Scholar 

  112. Viikari, L. and Linko, M., Reduction of nucleic acid content of SCP, Process Biochem., 17–35, May (1977).

    Google Scholar 

  113. Emery, A. N., Barker, A. J. and Hargrave, A. L., Processing of microbial protein for food use, Chem. Engnr, 506–9, July (1977).

    Google Scholar 

  114. Godfrey, T. and Reichelt, J., Industrial Enzymology: The Application of Enzymes in Industry, Macmillan, London, 1983.

    Google Scholar 

  115. Street, G., Large scale industrial enzyme production, CRC Crit. Rev. Biotechnol., 1 (1), 59–85 (1984).

    Article  Google Scholar 

  116. Keay, L., Moseley, M. H., Anderson, R. G., O′Conner, R. J. and Wild, B. SProduction and isolation of microbial proteases, Biotechnol. Bioeng., Symp. No. 3, 63–92 (1972).

    Google Scholar 

  117. Gilian, S., Prior, B., Venter, J. and Lategan, P., Production, purification and properties of β-glucosidase from Candida wickerhaus, Appl. Microbial Biotechnol, 21, 148–53 (1985).

    Article  Google Scholar 

  118. Hammond, P.The,role of recombinant DNA technology in the production of therapeutic human polypeptides, Ind. Biotechnol. (Wales), 3(1), January (1984).

    Google Scholar 

  119. Anon, Biotechnology and the healthcare revolution, Manuf. Chemist, 49– 51, January (1984).

    Google Scholar 

  120. ECN Chemscope, BioTechnology, special issue, May (1984).

    Google Scholar 

  121. ECN, New Hosts Developed for Gene Spliced Proteins, special report, ECN, Sept. 24 (1984).

    Google Scholar 

  122. McGregor, W. C., Large scale isolation and purification of proteins from recombinant E. coli, Ann. NY Acad. Sci., 231–7.

    Google Scholar 

  123. Schoner, R. G., Ellis, L. F. and Schoner, B. E., Isolation and purification of protein granules from Escherichia coli cells over-producing bovine growth hormone, Bio/Technology, 151–4, February (1985).

    Google Scholar 

  124. Anon, Immobilised rDNA E. coli system secretes 40% enzyme for four months, Bioproc. Technol., 7(3), March (1985).

    Google Scholar 

  125. Sassenfeld, H. M. and Brewer, S. J., A polypeptide fusion designed for the purification of recombinant proteins, BioTechnology, 76–81 (1984).

    Google Scholar 

  126. Spark, L., Goodbye to ‘bio-hype’ but not to secrecy, Process Engng, 35–8, July (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Brocklebank, M.P. (1987). Large Scale Separation and Isolation of Proteins. In: King, R.D., Cheetham, P.S.J. (eds) Food Biotechnology—1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3411-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3411-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8025-5

  • Online ISBN: 978-94-009-3411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics