Skip to main content

Proteins, Enzymes and Cells in Urine as Indicators of the Site of Renal Damage

  • Chapter
Nephrotoxicity in the experimental and clinical situation

Part of the book series: Developments in Nephrology ((DINE,volume 19-20))

Abstract

A comparison of the composition of fluid entering and leaving the kidney shows that many of the normal plasma constituents are handled individually — some are eliminated, some are conserved. For example, we have to account for the near absence of glucose and protein and for the appearance of high concentrations of creatinine and urea. To fulfil its role in maintaining a relatively constant internal environment the kidney is able to perform many complex and diverse functions simultaneously. These major functions include filtration, reabsorption, secretion and excretion. Changes in any of these functions will be reflected by a change in the composition of the urine. It is widely accepted that a variety of chemical substances can alter renal function, and the ability to produce a mild and reversible change is important from a pharmacological viewpoint, e.g. diuresis. However, in some instances irreversible effects may occur following incidental exposure to toxic substances. There are several reasons why the kidney may be particularly susceptible to injury. Firstly, renal blood flow is approximately 25% of cardiac output and as such delivers large quantities of blood and contents to the kidney. Secondly, the anatomical and functional properties of the kidney ensure that ample and often unwanted exposure to chemicals occurs by virtue of the blood supply to peritubular membranes and by virtue of tubular fluid at the brush-border membranes in the proximal tubule. Thirdly, the ability to concentrate the glomerular fluid may mean an increase in concentration of 100–1000 fold of certain chemical substances at critical regions of the nephron, e.g. the proximal tubule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pesce, A.J. Methods used for the analysis of proteins in the urine. Nephron 13, 93 (1974)

    PubMed  CAS  Google Scholar 

  2. Butler, E.A. and Flynn, F.V. The proteinuria of renal tubular disorders. Lancet 276, 978 (1958)

    Google Scholar 

  3. Dillard, M.G., Pesce, A.J, Pollak, V.E. and Boreisha, I. Proteinuria and renal protein clearances in patients with renal tubular disorders. J. Lab. Clin. Med. 78, 203 (1971)

    PubMed  CAS  Google Scholar 

  4. Rennke, H.G. and Venkatachalam, M.A. Structural determinants of glomerular permselectivity. Fed. Proc. 36, 2619 (1977)

    CAS  Google Scholar 

  5. Pesce, A.J., Boreisha, I. and Pollak, V.E. Rapid differentiation of glomerular and tubular proteinuria by sodium dodecyl sulfate Polyacrylamide gel electrophoresis. Clin. Chim. Acta 40, 27 (1972)

    PubMed  CAS  Google Scholar 

  6. Segrest, J.P. and Jackson, R.L. Molecular weight determination of glycoproteins by Polyacrylamide gel electrophoresis in sodium dodecyl sulfate. In: Methods in Enzymology 28. Ginsburg V. (Ed.) Academic Press, New York and London. 54 (1972)

    Google Scholar 

  7. Pesce, A.J., Hsu, A., Kornhauser, C. et al. Method for measuring the concentration of urinary proteins according to their molecular size category. Clin. Chem. 22, 667 (1976)

    PubMed  CAS  Google Scholar 

  8. Lindstedt, G. and Lundberg, P.A. Loss of tubular proteinuria pattern during urine concentration with a commercial membrane filter cell (Minicon (R) B-15 system). Clin. Chim. Acta 56, 125 (1974)

    PubMed  CAS  Google Scholar 

  9. Boesken, W.H., Kopf, K. and Schollmeyer, P. Differentiation of proteinuric diseases by disc electrophoretic molecular weight analysis of urinary proteins. Clin. Nephrol. 1, 311 (1973)

    PubMed  CAS  Google Scholar 

  10. Balant, L., Mulli, J.C. and Fabre, J. Urinary protein analysis with sodium dodecylsulfate Polyacrylamide gel electrophoresis - a comparison with other analytical techniques. Clin. Chim. Acta 54, 27 (1974)

    PubMed  CAS  Google Scholar 

  11. Pires, M.T., Da Cunha, A.S., Virella, G. and Simoes, J. Analytical characterization of urinary proteins by sodium dodecyl sulphate-polyacrylamide gel electrophoresis in renal disease. Nephron. 14, 361 (1975)

    PubMed  CAS  Google Scholar 

  12. Vesterberg, O. and Nise, G. Urinary proteins studied by use of isoelectric focusing. Tubular malfunction in association with exposure to cadmium. Clin. Chem. 19, 1179 (1973)

    PubMed  CAS  Google Scholar 

  13. Rotbol, L. Isoelectric focusing of human urinary proteins in Polyacrylamide gel. Clin. Chim. Acta 29, 101 (1970)

    PubMed  CAS  Google Scholar 

  14. Anderson, N.G., Anderson, N.L., Tollaksen, S.L. et al. Analytical techniques for cell fractions. XXV. Concentration and two-dimensional electrophoretic analysis of human urinary proteins. Analyt. Biochem. 95, 48 (1979)

    PubMed  CAS  Google Scholar 

  15. Ziai, M.R., Jackson, P. and Thompson, R. J. A novel human kidney-specific protein detected by two-dimensional electrophoresis: isolation, radioimmunoassay, and immunohistochemical localization. Electrophoresis 5, 362 (1984)

    Google Scholar 

  16. Ratge, D. and Wisser, H. Urinary protein profiling by high-performance gel permeation chromatography. J. Chromatogr. Biomed. Appl. 230, 47 (1982)

    CAS  Google Scholar 

  17. Lindblom, H., Soderberg, L., Cooper, E.H. and Turner, R. Urinary protein isolation by high-performance ion-exchange chromatography. J. Chromatogr. 266, 187 (1983)

    PubMed  CAS  Google Scholar 

  18. Hardwicke, J. Laboratory aspects of proteinuria in human disease. Clin. Nephrol. 3, 37 (1975)

    PubMed  CAS  Google Scholar 

  19. Baumann, K. Renal transport of proteins. In: Renal transport of organic substances. Greger R., Lang F. and Silbernagl S. (Eds.) Springer Verlag (1981) 118

    Google Scholar 

  20. Miles, D.W., Mogensen, C.E. and Gunderson, H.J.G. Radioimmunoassay for urinary albumin using a single antibody. Scand. J. Clin. Lab. Invest. 26, 5 (1970)

    PubMed  CAS  Google Scholar 

  21. Woo, J., Floyd, M., Cannon, D.C. and Kahan, B. Radioimmunoassay for urinary albumin. Clin. Chem. 24, 1464 (1978)

    PubMed  CAS  Google Scholar 

  22. Strober, W. and Waldmann, T.A. The role of the kidney in the metabolism of plasma proteins. Nephron 13, 35 (1974)

    PubMed  CAS  Google Scholar 

  23. Ottosen, P.D., Bode, F., Madsen, K.M. and Maunsbach, A.B. Renal handling of lysozyme in the rat. Kidney Int. 15, 246 (1979)

    PubMed  CAS  Google Scholar 

  24. Galaske, R.G., Van Liew, J.B. and Feld, L.G. Filtration and reabsorption of endogenous low-molecular-weight protein in the rat kidney. Kidney Int. 16, 394 (1979)

    PubMed  CAS  Google Scholar 

  25. Maack, T., Johnson, V., Kau, S.T. et al. Renal filtration, transport, and mechanism of low molecular weight proteins: A review. Kidney Int. 16, 251 (1979)

    PubMed  CAS  Google Scholar 

  26. Carone, F.A. and Peterson, D.R. Hydrolysis and transport of small peptides by the proximal tubule. Am. J. Physiol. 238, F151 (1980)

    PubMed  CAS  Google Scholar 

  27. Baumann, K., Bode, F., Ottosen, P.D. et al. Uptake of lysozyme in rat proximal tubule is a saturable transport process. In: Functional ultrastructure of the kidney. Maunsbach, A.B., Olsen, T.S. and Christensen, E.I. (Eds.) Academic Press (1980) 291

    Google Scholar 

  28. Berggard, I. and Bearn, A.G. Isolation and properties of a low molecular weight β-globulin occurring in human biological fluids. J. Biol. Chem. 243, 4095 (1968)

    PubMed  CAS  Google Scholar 

  29. Evrin, P.E., Peterson, P.A., Wide, L. and Berggard, I. Radioimmunoassay of β2-Microglobulin in human biological fluids. Scand. J. Clin. Lab. Invest. 28, 439 (1971)

    PubMed  CAS  Google Scholar 

  30. Plesner, T., Norgaard-Pedersen, B. and Boenisch, T. Radioimmunoassay of β2-microglobulin. Scand. J. Clin. Lab. Invest. 35, 729 (1975)

    PubMed  CAS  Google Scholar 

  31. Bernard, A.M., Vyskocil, A. and Lauwerys, R.R. Determination of β2-Microglobulin in human urine and serum by latex immunoassay. Clin. Chem. 27, 832 (1981)

    PubMed  CAS  Google Scholar 

  32. Karlsson, F.A., Groth, T., Sege, K. et al. Turnover in humans of β2-microglobulin: the constant chain of HLA-antigens. Eur. J. Clin. Invest. 10, 293 (1980)

    PubMed  CAS  Google Scholar 

  33. Bernier, G.M. and Conrad, M.E. Catabolism of β2-microglobulin by the rat kidney. Am. J. Physiol. 217, 1359 (1969)

    PubMed  CAS  Google Scholar 

  34. Conway, T.P. and Poulik, M.D. Catabolism of rat β2-microglobulin in the rat. J. Lab. Clin. Med. 89, 1208 (1977)

    PubMed  CAS  Google Scholar 

  35. Wibell, L., Evrin, P.E. and Berggard, I. Serum β2-microglobulin in renal disease. Nephron 10, 320 (1973)

    PubMed  CAS  Google Scholar 

  36. Wibell, L. The serum level and urinary excretion of β2-microglobulin in health and renal disease. Pathol. Biol. 26, 295 (1978)

    PubMed  CAS  Google Scholar 

  37. Vree, T.B., Guelen, P.J.M., Jongman-Nix, B. and Walenkamp, G.H.I.M. The relationship between the renal clearance of creatinine and the apparent renal clearance of β2-Microglobulin in patients with normal and impaired kidney function. Clin. Chim. Acta 114, 93 (1981)

    PubMed  CAS  Google Scholar 

  38. Schardijn, G., Statius Van Eps, L.W., Swaak, A.J.G. et al. Urinary β2- microglobulin in upper and lower urinary-tract infections. Lancet 1, 805 (1979)

    PubMed  CAS  Google Scholar 

  39. Schentag, J.J., Sutfin, T.A., Plaut, M.E. and Jusko, W.J. Early detection of aminoglycoside nephrotoxicity with urinary β2-Microglobulin. J. Med. 9, 201 (1978)

    PubMed  CAS  Google Scholar 

  40. Weise, M., Prufer, D., Jaques, G. et al. β2-Microglobulin and other proteins as parameter for tubular function. Contr. Nephrol. 24, 88 (1981)

    CAS  Google Scholar 

  41. Peterson, P.A., Evrin, P.E. and Berggard, I. Differentiation of glomerular, tubular and normal proteinuria: determinations of urinary excretion of microglobulin, albumin and total protein. J. Clin. Invest. 48, 1189 (1969)

    PubMed  CAS  Google Scholar 

  42. Hall, P.W. and Vasiljevic, M. (β2-Microglobulin excretion as an index of renal tubular disorders with special reference to endemic Balkan nephropathy. J. Lab. Clin. Med. 81, 897 (1973)

    PubMed  CAS  Google Scholar 

  43. Karlsson, F.A. and Lenkei, R. Urinary excretion of albumin and microglobulin in a population from an area where Balkan nephropathy is endemic. Scand. J. Clin. Lab. Invest. 37, 169 (1977)

    PubMed  CAS  Google Scholar 

  44. Bernard, A., Buchet, J.P., Roels, H. et al. Renal excretion of proteins and enzymes in workers exposed to cadmium. Eur. J. Clin. Invest. 9, 11 (1979)

    PubMed  CAS  Google Scholar 

  45. Bernard, A., Goret, A., Roels, H. et al. Experimental confirmation in rats of the mixed type proteinuria observed in workers exposed to cadmium. Toxicology 10, 369 (1978)

    PubMed  CAS  Google Scholar 

  46. Shiroishi, K., Kjellstrom, T., Kubota, K. et al. Urine analysis for detection of cadmium-induced renal changes, with special reference to microglobulin. Environ. Res. 13, 407 (1977)

    PubMed  CAS  Google Scholar 

  47. Tohyama, C., Shaikh, Z.A., Nogawa, K., Kobayashi, E. and Honda, R. Urinary metallothionein as a new index of renal dysfunction in “Itai-Itai” disease patients and other Japanese women environmentally exposed to cadmium. Arch. Toxicol. 50, 159 (1982)

    PubMed  CAS  Google Scholar 

  48. Beirne, G.J. and Brennan, J.T. Glomerulonephritis associated with hydrocarbon solvents. Arch. Environ. Hlth. 25, 365 (1972)

    CAS  Google Scholar 

  49. Ehrenreich, T., Yunis, S.L. and Churg, J. Membranous nephropathy following exposure to volatile hydrocarbons. Environ. Res. 14, 35 (1977)

    PubMed  CAS  Google Scholar 

  50. Ravnskov, U., Forsberg, B. and Skerfving, S. Glomerulo-nephritis and exposure to organic solvents. Acta Med. Scand. 205, 575 (1979)

    PubMed  CAS  Google Scholar 

  51. Finn, R., Fennerty, A.G. and Ahmad, R. Hydrocarbon exposure and glomerulonephritis. Clin. Nephrol. 14, 173 (1980)

    PubMed  CAS  Google Scholar 

  52. Churchill, D.N., Fine, A. and Gault, M.H. Association between hydrocarbon exposure and glomerulonephritis. An appraisal of the evidence. Nephron 33, 169 (1983)

    PubMed  CAS  Google Scholar 

  53. Askergren, A., Allgen, L.G., Karlsson, C. et al. Studies on kidney function in subjects exposed to organic solvents. 1. Excretion of albumin and β2-microglobulin in the urine. Acta Med. Scand. 209, 479 (1981)

    PubMed  CAS  Google Scholar 

  54. Bernard, A.M., Moreau, D. and Lauwerys, R. Comparison of retinol-binding protein and (β2-microglobulin determination in urine for the early detection of tubular proteinuria. Clin. Chim. Acta 126, 1 (1982)

    PubMed  CAS  Google Scholar 

  55. Bernard, A.M., Moreau, D. and Lauwerys, R. Latex immunoassay of human retinol-binding protein. Clin. Chem. 28, 1167 (1982)

    PubMed  CAS  Google Scholar 

  56. Peterson, P.A. and Berggard, I. Isolation and properties of a human retinol-transporting protein. J. Biol. Chem. 246, 25 (1971)

    PubMed  CAS  Google Scholar 

  57. Peterson, P.A. Characteristics of a vitamin A-transporting protein complex occurring in human serum. J. Biol. Chem. 246, 34 (1971)

    PubMed  CAS  Google Scholar 

  58. Scarpioni, L., Dall’Aglio, P.P., Poisetti, P.G. and Buzio, C. Retinol binding protein in serum and in urine of glomerular and tubular nephropathies. Clin. Chim. Acta 68, 107 (1976)

    PubMed  CAS  Google Scholar 

  59. Viau, C., Bernard, A, Ouled, A. et al. Polycationic gentamicin inhibits the tubular reabsorption of plasma proteins according to their electrical charge. In: Renal Heterogeneity and Target Cell Toxicity. Bach, P.H. and Lock, E.A. (Eds.) John Wiley and Sons, Chichester (1985) 353

    Google Scholar 

  60. Svensson, L. and Ravnskov, U. α2-Microglobulin, a new low molecular weight plasma protein. Clin. Chim. Acta 73, 415 (1976)

    PubMed  CAS  Google Scholar 

  61. Ekstrom, B. and Berggard, I. Human α1-Microglobulin. J. Biol. Chem. 252, 8048 (1977)

    PubMed  CAS  Google Scholar 

  62. Yu, H., Yanagisawa, Y., Forbes, M.A. et al. Alpha-1-microglobulin: an indicator protein for renal tubular function. J. Clin. Pathol. 36, 253 (1983)

    PubMed  CAS  Google Scholar 

  63. Hall, C.L. and Hardwicke, J. Low molecular weight proteinuria. Annu. Rev. Med. 30, 199 (1979)

    PubMed  CAS  Google Scholar 

  64. Frearson, N., Taylor, R.D. and Perry, S.V. Proteins in the urine associated with Duchenne muscular dystrophy and other neuromuscular diseases. Clin. Sci. 61, 141 (1981)

    PubMed  CAS  Google Scholar 

  65. Edwards, J.J., Anderson, N.G., Tollaksen, S.L. et al. Proteins of human urine. II. Identification by two-dimensional electrophoresis of a new candidate marker for prostatic cancer. Clin. Chem. 28, 160 (1982)

    PubMed  CAS  Google Scholar 

  66. Alt, J.M, Hackbarth, H., Deerberg, F. and Stolte, H. Proteinuria in rats in relation to age-dependent renal changes. Lab. Anim. 14, 95 (1980)

    PubMed  CAS  Google Scholar 

  67. Weaver, R.N., Gray, J.E. and Schultz, J.R. Urinary proteins in Sprague- Dawley rats with chronic progressive nephrosis. Lab. Anim. Sci. 25, 705 (1975)

    PubMed  CAS  Google Scholar 

  68. Neuhaus, O.W. and Flory, W. Age-dependent changes in the excretion of urinary proteins by the rat. Nephron 22, 570 (1978)

    PubMed  CAS  Google Scholar 

  69. Galaske, R.G., Van Liew, J.B. and Feld, L.G. Urinary protein excretion in the rat: Strain and age dependence. Contr. Nephrol. 19, 71 (1980)

    CAS  Google Scholar 

  70. Grant, G.H. The proteins of normal urine. II. From the urinary tract. J. Clin. Pathol. 12, 510 (1959)

    PubMed  CAS  Google Scholar 

  71. Roy, A.K. and Neuhaus, O.W. Proof of the hepatic synthesis of a sex dependent protein in the rat. Biochim. Biophys. Acta 127, 82 (1966)

    PubMed  CAS  Google Scholar 

  72. Perassi, R. and Martin, A. Urinary proteins of the normal rat. Int. J. Peptide Protein Res. 5, 1 (1973)

    CAS  Google Scholar 

  73. Roy, A.K., Neuhaus, O.W. and Harmison, C.R. Preparation and characterisation of a sex-dependent rat urinary protein. Biochem. Biophys. Acta 127, 72 (1966)

    PubMed  CAS  Google Scholar 

  74. Roy, A.K. and Neuhaus, O.W. Androgenic control of a sex-dependent protein in the rat. Nature 214, 618 (1967)

    PubMed  CAS  Google Scholar 

  75. Neuhaus, O.W. and Lerseth, D.S. Dietary control of the renal reabsorption and excretion of α2U-globulin. Kidney Int. 16, 409 (1979)

    PubMed  CAS  Google Scholar 

  76. Haars, L.J. and Pitot, H.C. α2U-Globulin in the rat. The regulation of the appearance of multiple forms in vivo and in primary cultures of adult hepatocytes. J. Biol. Chem. 254, 9401 (1979)

    PubMed  CAS  Google Scholar 

  77. Vandoren, G., Mertens, B., Heyns, W. et al. Different forms of α2U-globulin in male and female rat urine. Eur. J. Biochem. 134, 175 (1983)

    PubMed  CAS  Google Scholar 

  78. Kurtz, D.T. Rat α2U-globulin is encoded by a multigene family. J. Mol. Appi. Genet. 1, 29 (1981)

    CAS  Google Scholar 

  79. Neuhaus, O.W., Flory, W., Biswas, N. and Hollerman, C.E. Urinary excretion of α2U-globulin and albumin by adult male rats following treatment with nephrotoxic agents. Nephron 28, 133 (1981)

    PubMed  CAS  Google Scholar 

  80. Alden, C.L., Kanerva, R.L., Ridder, G. and Stone, L.C. The pathogenesis of the nephrotoxicity of volatile hydrocarbons in the male rat. In: Renal Effects of Petroleum Hydrocarbons. Mehlman, M.A., Hemstreet, C.P., Thorpe, J.J. and Weaver, N.K. (Eds.) Princeton Scientific Publishers Inc. VII (1984) 107

    Google Scholar 

  81. Stonard, M.D., Foster, J.R., Phillips, P.G.N, et al. Hyaline droplet formation in rat kidney induced by 2,2,4-trimethylpentane. In: Renal Heterogeneity and Target Cell Toxicity. Bach, P.H. and Lock, E.A. (Eds.) John Wiley and Sons Ltd. (1985) 485.

    Google Scholar 

  82. Oliver, J., Moss, J., MacDowell, M.C. and Lee, Y.C. Cellular mechanisms of protein metabolism in the nephron. II. The histochemical characteristics of protein absorption droplets. J. Exp. Med. 99, 605 (1954)

    PubMed  CAS  Google Scholar 

  83. Oliver, J. and MacDowell, M. Cellular mechanisms of protein metabolism in the nephron. VII. The characteristics and significance of the protein absorption droplets (hyaline droplets) in epidemic haemorrhagic fever and other renal diseases. J. Exp. Med. 107, 731 (1958)

    PubMed  CAS  Google Scholar 

  84. Logothetopoulos, J. and Weinbren, K. Naturally occurring protein droplets in the proximal tubule of the rat’s kidney. Br. J. Exp. Pathol. 36, 402 (1955)

    PubMed  CAS  Google Scholar 

  85. Rumke, Ph. and Thung, P.J. Immunological studies on the sex-dependent prealbumin in mouse urine and on its occurrence in the serum. Acta Endocrinol. 47, 156 (1964)

    CAS  Google Scholar 

  86. Finlayson, J.S., Asofsky, R., Potter, M. and Runner, C.C. Major urinary protein complex of normal mice: origin. Science 149, 981 (1965)

    PubMed  CAS  Google Scholar 

  87. Reuter, A.M., Hamoir, G., Marchand, R. and Kennes, F. Isolation and properties of a mouse serum prealbumin excreted in urine. Eur. J. Biochem. 5, 233 (1968)

    PubMed  CAS  Google Scholar 

  88. Plummer, D.T. and Leathwood, P.D. Some properties of lactate dehydrogenase found in human urine. Biochem. J. 103, 172 (1967)

    PubMed  CAS  Google Scholar 

  89. Butterworth, P.J. Human kidney and urinary alkaline phosphatases. Biochem. J. 107, 467 (1968)

    PubMed  CAS  Google Scholar 

  90. Kempson, S.A., Ellis, B.G. and Price, R.G. Changes in rat renal cortex, isolated plasma membranes and urinary enzymes following the injection of mercuric chloride. Chem. Biol. Int. 18, 217 (1977)

    CAS  Google Scholar 

  91. Raab, W.P. Diagnostic value of urinary enzyme determinations. Clin. Chem. 18, 5 (1972)

    PubMed  CAS  Google Scholar 

  92. Mattenheimer, H. Enzymes in renal diseases. Ann. Clin. Lab. Sci. 7, 422 (1977)

    PubMed  CAS  Google Scholar 

  93. Vanderlinde, R.E. Urinary enzyme measurements in the diagnosis of renal disorders. Ann. Clin. Lab. Sci. 11, 189 (1981)

    PubMed  CAS  Google Scholar 

  94. Price, R.G. Urinary enzymes, nephrotoxicity and renal disease. Toxicology, 23, 99 (1982)

    PubMed  CAS  Google Scholar 

  95. Robinson, D., Price, R.G. and Dance, N. Separation and properties of β- galactosidase, β-glucosidase, β-glucuronidase and N-acetyl-β-glucosaminidase from rat kidney. Biochem. J. 102, 525 (1967)

    PubMed  CAS  Google Scholar 

  96. Schmidt, U. and Dubach, U.C. Quantitative histochemie am nephron. Progr. Histochem. Cytochem. 2, 185 (1971)

    Google Scholar 

  97. Heinle, H., Wendel, A. and Schmidt, U. The activities of the key enzymes of the gamma-glutamyl cycle in microdissected segments of the rat nephron. FEBS Lett. 73, 220 (1977)

    PubMed  CAS  Google Scholar 

  98. Lehir, M., Dubach, U.C. and Guder, W.G. Distribution of acid hydrolases in the nephron of normal and diabetic rats. Int. J. Biochem. 12, 41 (1980)

    CAS  Google Scholar 

  99. Koseki, C., Endou, H., Sudo, J. et al. Evaluation of nephrotoxic site in rat proximal tubule: intrarenal distributions of three enzymes and effects of mercuric chloride and gentamicin on their excretion into urine. Folia Pharmacol. Japon 76, 59 (1980)

    CAS  Google Scholar 

  100. Peters, J.E., Schneider, I. and Haschen, R.J. Determination of L-alanyl- peptide hydrolase in urine. Clin. Chim. Acta 36, 289 (1972)

    CAS  Google Scholar 

  101. Mondorf, A.W., Breier, J., Hendus, J. et al. Effect of aminoglycosides on proximal tubular membranes of the human kidney. Eur. J. Clin. Pharmacol. 13, 133 (1978)

    PubMed  CAS  Google Scholar 

  102. Jung, K. and Scholz, D. An optimised assay of alanine aminopeptidase activity in urine. Clin. Chem. 26, 1251 (1980)

    PubMed  CAS  Google Scholar 

  103. Fernley, H.N. and Walker, P.G. Kinetic behaviour of calf intestinal alkaline phosphatase with 4-methylumbelliferyl phosphate. Biochem. J. 97, 95 (1965)

    PubMed  CAS  Google Scholar 

  104. Wright, P.J., Leathwood, P.D. and Plummer, D.T. Enzymes in rat urine: alkaline phosphatase. Enzymologia 42, 317 (1972)

    PubMed  CAS  Google Scholar 

  105. Salgo, L. and Szabo, A. Gamma-glutamyl transpeptidase activity in human urine. Clin. Chim. Acta 126, 9 (1982)

    PubMed  CAS  Google Scholar 

  106. Leathwood, P.D., Gilford, M.K. and Plummer, D.T. Enzymes in rat urine: lactate dehydrogenase. Enzymologia 42, 285 (1972)

    PubMed  CAS  Google Scholar 

  107. Leaback, D.H. and Walker, P.G. Studies on glucosaminidase. 4. The fluorimetric assay of N-acetyl-β-glucosaminidase. Biochem. J. 78, 151 (1961)

    PubMed  CAS  Google Scholar 

  108. Maruhn, D. Rapid colorimetric assay of β-galactosidase and N-acetyl-β-glucosaminidase in human urine. Clin. Chim. Acta 73, 453 (1976)

    PubMed  CAS  Google Scholar 

  109. Yuen, C.T., Price, R.G., Chattagoon, L. et al. Colorimetric assays for Nacetyl-β-D-glucosaminidase and β-D-galactosidase in human urine using newlydeveloped w-nitrostyryl substrates. Clin. Chim. Acta 124, 195 (1982)

    PubMed  CAS  Google Scholar 

  110. Amador, E., Zimnerman, T.S. and Wacker, W.E.C. Urinary alkaline phosphatase activity. II. An analytical validation of the assay method. J. Am. Med. Assoc. 185, 953 (1963)

    CAS  Google Scholar 

  111. Werner, M., Maruhn, D. and Atoba, M. Use of gel filtration in the assay of urinary enzymes. J. Chromatogr. 40, 254 (1969)

    PubMed  CAS  Google Scholar 

  112. Werner, M. and Gabrielson, D. Ultrafiltration for improved assay of urinary enzymes. Clin. Chem. 23, 700 (1977)

    PubMed  CAS  Google Scholar 

  113. Wellwood, J.M., Price, R.G, Ellis, B.G. and Thompson, A.E. A note on the practical aspects of the assay of N-acetyl-β-glucosaminidase in human urine. Clin. Chim. Acta 69, 85 (1976)

    PubMed  CAS  Google Scholar 

  114. Josch, W., Dubach, U.C. and Strobel, M. Der einfluss des urin-pH auf die aktivitat von urinenzymen. Experientia 23, 342 (1967)

    PubMed  CAS  Google Scholar 

  115. Jung, K., Pergande, M., Schreiber, G. and Schroder, K. Stability of enzymes in urine at 37 °C. Clin. Chim. Acta 131, 185 (1983)

    PubMed  CAS  Google Scholar 

  116. Lockwood, T.D. and Bosmann, H.B. The use of urinary N-acetyl-β-glucosaminidase in human renal toxicology. 1. Partial biochemical characterization and excretion in humans and release from the isolated perfused rat kidney. Toxicol. Appl. Pharmacol. 49, 323 (1979)

    PubMed  CAS  Google Scholar 

  117. Stroo, W.E. and Hook, J.B. Enzymes of renal origin in urine as indicators of nephrotoxicity. Toxicol. Appl. Pharmacol. 39, 423 (1977)

    PubMed  CAS  Google Scholar 

  118. Price, R.G., Dance, N., Richards, B. and Cattell, W.R. The excretion of N-acetyl-β-glucosaminidase and β-galactosidase following surgery to the kidney. Clin. Chim. Acta 27, 65 (1970)

    PubMed  CAS  Google Scholar 

  119. Tucker, S.M., Boyd, P.J.R., Thompson, A.E. and Price, R.G. Automated assay of N-acetyl-β-glucosaminidase in normal and pathological human urine. Clin. Chim. Acta 32, 333 (1975)

    Google Scholar 

  120. Wellwood, J.M., Simpson, P.M., Tighe, J.R. and Thompson, A.E. Evidence of gentamicin nephrotoxicity in patients with renal allografts. Br. Med. J. 3, 278 (1975)

    PubMed  CAS  Google Scholar 

  121. Mansell, M.A., Jones, N.F., Ziroyannis, P.N. and Marson, W. N-acetyl-β-Dglucosaminidase: A new approach to the screening of hypertensive patients for renal disease. Lancet 2, 803 (1978)

    PubMed  CAS  Google Scholar 

  122. Ellis, B.G., Tucker, S.M., Thompson, A.E. and Price, R.G. Presence of serum and tissue forms of NAG in urine from patients with renal disease. Clin. Chim. Acta 64, 195 (1975)

    PubMed  CAS  Google Scholar 

  123. Tucker, S.M., Pierce, R.J. and Price, R.G. Characterisation of human N-acetyl-β-glucosaminidase isoenzymes as an indicator of tissue damage in disease. Clin. Chim. Acta 102, 29 (1980)

    PubMed  CAS  Google Scholar 

  124. Leathwood, P.D. and Plummer, D.T. The excretion of lactate dehydrogenase in human urine after the ingestion of aspirin. Biochem. J. 114, 197 (1969)

    PubMed  CAS  Google Scholar 

  125. Lockwood, T.D. and Bosmann, H.B. The use of urinary N-acetyl-β-glucos aminidase in human renal toxicology. II. Elevation in human excretion after aspirin and sodium salicylate. Toxicol. Appl. Pharmacol. 49, 337 (1979)

    PubMed  CAS  Google Scholar 

  126. Plummer, D.T., Leathwood, P.D. and Blake, M.E. Urinary enzymes and kidney damage by aspirin and phenacetin. Chem. Biol. Int. 10, 277 (1975)

    CAS  Google Scholar 

  127. Patel, V., Luft, F.C., Yum, M.N. et al. Enzymuria in gentamicin-induced kidney damage. Antimicrob. Ag. Chemother. 7, 364 (1975)

    CAS  Google Scholar 

  128. Wellwood, J.M., Ellis, B.G., Price, R.G. et al. Urinary N-acetyl-β-D-glucosaminidase activities in patients with renal disease. Br. Med. J. 3, 408 (1975)

    PubMed  CAS  Google Scholar 

  129. Wellwood, J.M., Lovell, D., Thompson, A.E. and Tighe, J.R. Renal damage caused by gentamicin: a study of the effects on renal morphology and urinary enzyme excretion. J. Pathol. 118, 171 (1976)

    PubMed  CAS  Google Scholar 

  130. Mondorf, A.W. Urinary enzymatic markers of renal damage. Kidney Dis. 2, 283 (1982)

    CAS  Google Scholar 

  131. Beck, P.R., Thompson, R.B. and Chaudhuri, A.K.R. Aminoglycoside antibiotics and renal function: changes in urinary gamma-glutamyltransferase excretion. J. Clin. Pathol. 30, 432 (1977)

    PubMed  CAS  Google Scholar 

  132. Gibey, R., Dupond, J.L., Alber, D. et al. Predictive value of urinary N- acetyl-β-glucosaminidase, alanine aminopeptidase and β2-Microglobulin in evaluating nephrotoxicity of gentamicin. Clin. Chim. Acta 116, 25 (1981)

    PubMed  CAS  Google Scholar 

  133. Wold, J.S. Cephalosporin nephrotoxicity. In: Toxicology of the Kidney. Hook, J.B. (Ed.) Raven Press, New York (1981) 251

    Google Scholar 

  134. Wright, P.J. and Plummer, D.T. The use of urinary enzyme measurements to detect renal damage caused by nephrotoxic compounds. Biochem. Pharmacol. 23, 65 (1974)

    PubMed  CAS  Google Scholar 

  135. Raab, W. and Moerth, C. Renal effects of gentamicin and cephaloridine. Arzneim. Forsch. 26, 377 (1976)

    CAS  Google Scholar 

  136. Wachsmuth, E.D. Quantification of acute cephaloridine nephrotoxicity in rats: Correlation of serum and 24 hr. urine analyses with proximal tubule injuries. Toxicol. Appl. Pharmacol. 63, 429 (1982)

    PubMed  CAS  Google Scholar 

  137. Wade, J.C., Smith, C.R., Petty, B.G. et al. Cephalothin plus an aminoglycoside is more nephrotoxic than methicillin plus an aminoglycoside. Lancet 2, 604 (1978)

    PubMed  CAS  Google Scholar 

  138. Harrison, W.O., Silverblatt, F.J. and Turck, M. Gentamicin nephrotoxicity: failure of three cephalosporins to potentiate injury in rats. Antimicrob. Ag. Chemother. 8, 209 (1975)

    CAS  Google Scholar 

  139. Luft, F.C., Patel, V., Yum, M.N. and Kleit, S.A. Nephrotoxicity of cephalosporin-gentamicin combination in rats. Antimicrob. Ag. Chemother. 9, 831 (1976)

    CAS  Google Scholar 

  140. Mengoli, C., Lechi, A., Arosio, E. et al. Contribution of four markers of tubular proteinuria in detecting upper urinary tract infections. Nephron 32, 234 (1982)

    PubMed  CAS  Google Scholar 

  141. Hall, P.W., Piscator, M., Vasilijevic, M. and Popovic, N. Renal function studies in individuals with the tubular proteinuria of endemic Balkan nephropathy. Q. J. Med., New Series 41, 385 (1972)

    Google Scholar 

  142. Diezi, J and Biollaz, J. Renal function tests in experimental toxicity studies. Pharmacol. Ther. 5, 135 (1979)

    CAS  Google Scholar 

  143. Balazs, T., Hatch, A., Zawidzka, Z. and Grice, H.C. Renal tests in toxicity studies on rats. Toxicol. Appl. Pharmacol. 5, 661 (1963)

    PubMed  CAS  Google Scholar 

  144. Cottrell, R.C., Agrelo, C.E., Gangolli, S.D. and Grasso, P. Histochemical and biochemical studies of chemically induced acute kidney damage in the rat. Fd. Cosmet. Toxicol. 14, 593 (1976)

    CAS  Google Scholar 

  145. Bhargava, A.S., Khater, A.R. and Gunzel, P. The correlation between lactate dehydrogenase activity in urine and serum and experimental renal damage in the rat. Toxicol. Lett. 1, 319 (1978)

    CAS  Google Scholar 

  146. Price, R.G., Dance, N. and Robinson, D.A. Comparison of the β-glycosidase excretion during kidney damage induced by 4-nitrophenyl-arsonic acid and by rabbit anti-rat kidney antibodies. Eur. J. Clin.Invest. 2, 47 (1971)

    PubMed  CAS  Google Scholar 

  147. Nomiyama, K., Yamamoto, A. and Sato, C. Assay of urinary enzymes in toxic nephropathy. Toxicol. Appl. Pharmacol. 27, 484 (1974)

    PubMed  CAS  Google Scholar 

  148. Kluwe, W.M. Renal function tests as indicator of kidney injury in subacute toxicity studies. Toxicol. Appl. Pharmacol. 57, 414 (1981)

    PubMed  CAS  Google Scholar 

  149. Emmanuelli, G., Cestonaro, G., Anfossi, G. et al. Urinary enzyme excretion and renal lactate dehydrogenase isoenzyme pattern in acute HgCl2 nephropathy of rats. Enzyme 27, 89 (1982)

    Google Scholar 

  150. Mme, D., Bombard, E. and Paar, D. Urine enzyme patterns in the rat after damage to different parts of the nephron. In: Selected Topics in Clinical Enzymology. Goldberg, D.M. and Werner, M. (Eds.) Walter de Gruyter and Co., Berlin (1984) 429

    Google Scholar 

  151. Ellis, B.G., Price, R.G. and Topham,, J.C. The effect of tubular damage by mercuric chloride on kidney function and some urinary enzymes in the dog. Chem. Biol. Int. 7. 101 (1973)

    CAS  Google Scholar 

  152. Stonard, M.D., Gore, C.W., Taylor, M.L. and Smith, I.K. Enzymes and proteins in urine as indices of injury to the kidney. In: Organ-Directed Toxicity. Chemical Indices and Mechanisms. Brown, S.S. and Davies,, D.S. (Eds.) Pergamon Press, Oxford (1981) 83

    Google Scholar 

  153. Lock, E.A. and Ishmael, J. The acute toxic effects of hexachloro-1:3 butadiene on the rat kidney. Arch Toxicol. 43, 47 (1979)

    PubMed  CAS  Google Scholar 

  154. Ellis, B.G. and Price, R.G. Urinary enzyme excretion during renal papillary necrosis induced in rats with ethyleneimine. Chem. Biol. Int. 11, 473 (1975)

    CAS  Google Scholar 

  155. Ellis, B.G., Price, R.C. and Topham, J.C. The effect of papillary damage by ethyleneimine on kidney function and some urinary enzymes in the dog. Chem. Biol. Int. 7. 131 (1973)

    CAS  Google Scholar 

  156. Rand-Weaver, M. and Price, R.G. Renal basement membranes: Macromolecular associations, antigenicity, and variation in disease. Biosci. Rep. 3, 713 (1983)

    PubMed  CAS  Google Scholar 

  157. Taylor, D.G., Price, R.G. and Robinson, D. The distribution of some hydrolases in glomeruli and tubular fragments prepared from rat kidney by tonal centrifugation. Biochem. J. 122, 641 (1971)

    PubMed  CAS  Google Scholar 

  158. Price, R.G. and Ellis, B.G. Urinary enzyme excretion in aminonucleoside nephrosis in rats. Chem. Biol. Int. 13, 353 (1976)

    CAS  Google Scholar 

  159. Bhuyan, U.N., Welbourn, C.R.B., Evans, D.J. and Peters, T.J. Biochemical studies of the isolated rat glomerulus and the effects of puromycin aminonucleoside administration. Br. J. Exp. Pathol. 61, 69 (1980)

    PubMed  CAS  Google Scholar 

  160. Ross, B.D. and Guder., W.G. Heterogeneity and compartmentation in the kidney. In: Metabolic Compartmentation. Sies, H. ( Ed.) Academic Press (1982) 363

    Google Scholar 

  161. Scherberich, J.E., Gauhl, C. and Mondorf, W. Biochemical, immunological and ultrastructural studies on brush-border membranes of human kidney. In: Biochemical Nephrology. Current Problems in Clinical Biochemistry 8. Guder, W.G. and Schmidt, U. (Eds.) Hans Huber Publishers 85 (1978)

    Google Scholar 

  162. Bernard, A., Goret,, A., Buchet, J.P. et al. Comparison of SDS-PAGE with quantitative methods for the analysis of cadmium-induced proteinuria. Int. Arch. Occup. Environ. Hlth. 44, 139 (1979)

    CAS  Google Scholar 

  163. Buchet, J.P., Roels, H., Bernard, A. and Lauwerys, R.R. Assessment of renal function of workers exposed to inorganic lead, cadmium or mercury vapour. J. Occup. Med. 22, 741 (1980)

    PubMed  CAS  Google Scholar 

  164. Stonard, M.D., Chater, B.V., Duffield, D.P. et al. An evaluation of renal function in workers occupationally exposed to mercury vapour. Int. Arch. Occup. Environ. Hlth. 52, 177 (1983)

    CAS  Google Scholar 

  165. Meyer, B.R., Fischbein, A., Rosenmann, K. et al. Increased urinary enzyme excretion in workers exposed to nephrotoxic chemicals. Am. J. Med. 76, 989 (1984)

    PubMed  CAS  Google Scholar 

  166. Franchini, I., Cavatorta, A., Falzoi, M. et al. Early indicators of renal damage in workers exposed to organic solvents. Int. Arch. Occup. Environ. Hlth. 52, 1 (1983)

    CAS  Google Scholar 

  167. Rofe, P. The cells of normal human urine. J. Clin. Pathol. 8, 25 (1955)

    PubMed  CAS  Google Scholar 

  168. Prescott, L.F. and Brodie, D.E. A simple differential stain for urinary sediment. Lancet 288, 940 (1964)

    Google Scholar 

  169. Prescott, L.F. Assessment of nephrotoxicity. Br. J. Clin. Pharmacol. 13, 303 (1982)

    PubMed  CAS  Google Scholar 

  170. Prescott, L.F. The normal urinary excretion rates of renal tubular cells, leucocytes and red blood cells. Clin. Sci. 31, 425 (1966)

    PubMed  CAS  Google Scholar 

  171. Gadeholt, H. Quantitative estimation of urinary sediment with special regard to sources of error. Br. Med. J. 1, 1547 (1964)

    PubMed  CAS  Google Scholar 

  172. Scott, J.T., Denman, A.M. and Dorling, J. Renal irritation caused by salicylates. Lancet 285, 344 (1963)

    Google Scholar 

  173. Prescott, L.F. Effects of acetylsalicylic acid, phenacetin, paracetamol and caffeine on renal tubular epithelium. Lancet 290, 91 (1965)

    Google Scholar 

  174. Gent, A.E., Taylor, J.F.N, and Brook, C.G.D. Effects of frusemide, lactose and urea on urinary cell loss. Br. Med. J. 4, 294 (1968)

    PubMed  CAS  Google Scholar 

  175. Davies, D.J. and Kennedy, A. The excretion of renal cells following necrosis of the proximal convoluted tubule. Br. J. Exp. Pathol. 48, 45 (1967)

    PubMed  CAS  Google Scholar 

  176. Prescott, L.F. and Ansari, S. The effects of repeated administration of HgCl2 on exfoliation of renal tubular cells and urinary glutamic-oxaloacetic transaminase activity in the rat. Toxicol. Appl. Pharmacol. 14, 97 (1969)

    PubMed  CAS  Google Scholar 

  177. Hardy, T.L. Identification of cells exfoliated from the rat kidney in experimental nephrotoxicity. Ann. Rheum. Dis. 29, 64 (1970)

    PubMed  CAS  Google Scholar 

  178. Phillips, R.D. and Egan, G.F. Effect of C10-C11 isoparaffinic solvent on kidney function in Fischer 344 rats during eight weeks of inhalation. Toxicol. Appl. Pharmacol. 73, 500 (1984)

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Stonard, M.D. (1987). Proteins, Enzymes and Cells in Urine as Indicators of the Site of Renal Damage. In: Bach, P.H., Lock, E.A. (eds) Nephrotoxicity in the experimental and clinical situation. Developments in Nephrology, vol 19-20. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3371-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3371-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8014-9

  • Online ISBN: 978-94-009-3371-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics