Skip to main content

Part of the book series: Developments in Nephrology ((DINE,volume 19-20))

Abstract

The classical biochemical approach to studying an organ has been to homogenize it. This technique has provided much of the present body of knowledge on intermediary metabolism, the nature of metabolites and the essential basic processes carried out in all cells. This “grind and measure” approach is especially successful in tissues and cell populations which are homogeneous. The more heterogeneous the collection of cells, the more the procedure based on destroying cell biological organization is seen to be limited in its usefulness. The kidney is heterogeneous at both a gross and a microscopic level. Cortex and medulla, though playing parts in the same overall process of urine production, are biochemically very dissimilar. Within the cortex and medulla there are numerous types of cells, each with special properties, many of which are highly directional. As a consequence the cells are polarized both along the kidney tubule length, and across its width on an axis from tubule lumen to tubule basement membrane. Methodologies that permit the study of chemical processes as they occur spatially, i.e. “anatomically based” approaches, are thus particularly pertinent to the study of the kidney and of nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker, A.M. and Oliver, J., Methods for the collection of fluid from single glomeruli and tubules of the mammalian kidney, Am. J. Physiol., 134, 562, 1941.

    CAS  Google Scholar 

  2. Williams, M.A., Quantitative methods in biology, in Practical Methods in Electron Microscopy, Glauert, A.M., ed., North Holland Press, Amsterdam, 6, 1977.

    Google Scholar 

  3. Weibel, E.R., Stereological methods, Vol. 1, Practical methods in biological morphometry, Academic Press, London, 1979.

    Google Scholar 

  4. Williams, M.A., Autoradiography and immunocytochemistry, in Practical methods in Electron Microscopy, Glauert, A.M., ed., North Holland Press, Amsterdam, 6, 1977.

    Google Scholar 

  5. Sayer–Hansen, K., Hansen, J. and Gunderson, H.J.G., Renal hypertrophy in ex–perimental diabetes. A morphometric study, Diabetologia, 18, 501, 1980.

    Google Scholar 

  6. Osterby, R. and Gundersen, H.J.G., Fast accumulation of basement membrane material and the rate of morphological changes in acute experimental diabetic glomerular hypertrophy, Diabetologia, 18, 493, 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Williams, M.A., Electron microscopic autoradiography: its application to protein biosynthesis, in Techniques in Protein Biosynthesis, Campbell, P.N. and Sargent, J.R., eds., Academic Press, London and New York, 3, 125, 1973.

    Google Scholar 

  8. Griffith, L.D., Bulger, R.E. and Trump, B.F., The ultra–structure of the functioning kidney, Lab. Invest., 16, 220, 1967.

    CAS  Google Scholar 

  9. Longley, J.B. and Burstone, M.S., Intraluminal nuclei and other inclusions as agonal artifacts of the renal proximal tubules, Am. J. Pathol., 42, 643, 1963.

    PubMed  CAS  Google Scholar 

  10. Cope, G.H. and Williams, M.A., Improved preservation of parotid tissue for electron microscopy. A method permitting collection of valid stereological data, J. Cell. Biol., 60, 292, 1974.

    Article  PubMed  CAS  Google Scholar 

  11. Mayhew, T.M. and Williams, M.A., A quantitative morphological analysis of macrophage stimulation. II. Changes in granule number, size and size distributions. Cell Tissue Res., 150, 529, 1974.

    Article  PubMed  CAS  Google Scholar 

  12. Weibel, E.R., Morphometry of the human lung: the state of the art after two decades. Extrait du bulletin european de physiopathologie respiratoire, 15, 999, 1979.

    CAS  Google Scholar 

  13. Bohman, S.O., The ultrastructure of rat renal medulla as observed after improved fixation methods, J. Ultrastruct. Res., 47, 329, 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Palay, S.L., McGee-Russell, S.M., Gordon, S. and Grillo, M.A., Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide, J. Cell Biol., 12, 385, 1962.

    Article  PubMed  CAS  Google Scholar 

  15. Pease, D.C., Histological techniques for electron microscopy, New York, Academic Press, 1960.

    Google Scholar 

  16. Maunsbach, A.B., The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells, J. Ultrastruct. Res., 15, 242, 1966.

    Article  PubMed  CAS  Google Scholar 

  17. Gottschalk, C.W. and Mylle, M., Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis, Am. J. Physiol., 189, 323, 1957.

    PubMed  CAS  Google Scholar 

  18. Folkow, B. and Neil, E., Circulation, Oxford University Press, New York, 33, 1971.

    Google Scholar 

  19. Thorball, N. and Tranum-Jensen, J., Vascular reactions to perfusion fixation, J. Microsc., (Oxford), 129, 123, 1983.

    Article  CAS  Google Scholar 

  20. Seefeldt, T., Gundersen, H.J.G. and Osterby, R., Stereological determination of the true width and distribution of glomerular epithelial foot processes and its application in experimental nephrosis, Stereol. Jugosl., 3, Suppl. 1, 443, 1981.

    Google Scholar 

  21. Aherne, W.A. and Dunnill, M.S., Morphometry, Arnold, London, 205, 1982.

    Google Scholar 

  22. Baak, J.P.A. and Oort, J., A manual of morphometry in diagnostic pathology, Springer-Verlag, Heidelberg and New York, 205, 1983.

    Google Scholar 

  23. Johnston, W.H., Latta, H. and Ostvaldo, L., Variations on glomerular ultrastructure in rat kidneys fixed by perfusion, J. Ultrastruct. Res., 45, 149, 1973.

    Article  PubMed  CAS  Google Scholar 

  24. Goncalves, V. and Sobrinho–Simoes, M.A., Comparative morphometric studies of the cells of the third proximal segment of the rat kidney under different conditions of fixation, Experientia, (Basel), 33, 761, 1977.

    Google Scholar 

  25. Elling, F., Hasselager, E. and Fruus, C., Perfusion fixation of kidneys in adult pigs for electron microscopy, Acta Anatomica, 98, 340, 1977.

    Article  PubMed  CAS  Google Scholar 

  26. Pfaller, W., Structure-function correlation on rat kidney-quantitative correlation of structure and function-a review, Adv. Anat. Embryol., 70, 1, 1982.

    CAS  Google Scholar 

  27. Gundersen, H.J.G. and Osterby, R., Optimizing sampling efficiency of stereological studies in biology or “Do more less well”, J. Microsc., 121, 65, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Shay, J., Economy of effort in electron microscope morphometry, Am. J. Pathol., 81, 503, 1975.

    PubMed  CAS  Google Scholar 

  29. Gupta, M., Mayhew, T.M., Bedi, K.S., Sharma, A.K. and White, E.H., Inter-animal variation and its influence on the overall precision of morphometric estimates based on nested sampling designs, J. Microsc., 131, 147, 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Wehner, H., Morphometry in nephro–pathology, Stereol. Jugosl., 3, Suppl. 1, 449, 1981.

    Google Scholar 

  31. Cope, G.H. and Williams, M.A., Restitution of granule stores in the rabbit parotid gland after isoprenaline-induced secretion: stereological analysis of volume parameters, Cell Tissue Res., 209, 315, 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Glauert, A.M., Fixation, dehydration and embedding of biological specimens, North Holland Press, Amsterdam, 209, 1975.

    Google Scholar 

  33. Bailey, N.T.J., Statistical methods in biology, English Universities Press, London, 1972.

    Google Scholar 

  34. Kaisling, B. and Kriz, W., Structural analysis of the rabbit kidney, Adv. Anat. Embryol. Cell Biol., 56, 1, 1979.

    Google Scholar 

  35. Roirppanen, T. and Collan, Y., Morphometrical method for analysis of kidney biopsies in diagnostic histopathology, Stereol. Jugosl., 3, Suppl. 1, 435, 1981.

    Google Scholar 

  36. Wehner, H., Quantitative pathomorphologie des glomerulum der menschlichen niere, Fisher Verlag, Stuttgart, 1974.

    Google Scholar 

  37. Hanberg-Sorensen, F., Quantitative studies of the renal corpuscles. III. The influence of post mortem delay before taking renal tissue samples and of the duration of tissue fixation. Acta Pathol. Microbiol. Scand., Section A, 83, 251, 1975.

    Google Scholar 

  38. Sorby, H.C., On slaty cleavage as exhibited in the Devonian limestones of Devonshire, Phil. Mag., 11, 20, 1856.

    Google Scholar 

  39. Dehoff, R.T. and Rhines, F.N., Determination of number of particles per unit volume from measurements made on random plane sections: the general cylinder and the ellipsoid, Trans AIME, 221, 975, 1961.

    CAS  Google Scholar 

  40. Underwood, E.E., A standardised system of notation for stereologists, Stereol. Jugosl., 3, Suppl. 1, 715, 1981.

    Google Scholar 

  41. Delesse, A., Procede mechanique pour determines la composition des roches (extrait), CR Acad. Sci., (Paris), 25, 544, 1847.

    Google Scholar 

  42. Grantham, J.D., Ganóte, C.E., Burg, M.B. and Orloff, J., Paths of transtubular water flow in isolated renal collecting tubules, J. Cell. Biol., 41, 562–576, 1969.

    Article  PubMed  CAS  Google Scholar 

  43. Linshaw, M.A., Effects of metabolic inhibitors on renal tubule cell volume, Am. J. Physiol., 239, F 562–579, 1980.

    Google Scholar 

  44. Weibel, E.R. and Gomez, D.M., A Principle for counting tissue structures on random sections, J. Appl. Physiol., 17, 343, 1962.

    PubMed  CAS  Google Scholar 

  45. Sterio, D.C., Unbiased estimation of arbitrary particles, J. Microsc., (Oxford), 134, 127, 1984.

    Article  CAS  Google Scholar 

  46. Cruz-Orive, L.M. and Myking, A.D., Stereological estimation of volume ratios by systematic sections, J. Microsc., (Oxford), 122, 143, 1981.

    Article  CAS  Google Scholar 

  47. Baddeley, A.J., Gundersen, H.J.G. and Cruz-Orive, L.M., Estimation of surface area from vertical sections, Proc. 4th European Symposium on Stereology, Goteburg, Paper 11, 1985.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Williams, M.A., Lowrie, J.I. (1987). Fixation of Kidney Tissue for Morphometric Study. In: Bach, P.H., Lock, E.A. (eds) Nephrotoxicity in the experimental and clinical situation. Developments in Nephrology, vol 19-20. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3367-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3367-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8012-5

  • Online ISBN: 978-94-009-3367-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics