Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 235))

Abstract

A simple model for the growth of icosahedral phase based on structural information obtained from crystalline phases is defined and simulation results are presented. Growth velocities in the splat-cooling range and 400Å system sizes are attained. The resulting structures are neither crystalline nor quasiperiodic but resemble a glass. Long-range correlations indicate a linear peak width vs. | G| relationship with a slope that is within a factor of two of experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Article  CAS  Google Scholar 

  2. An excellent survey of the literature is given by C. L. Henley, Comments Cond. Mat. Phys. 13, 59 (1987).

    CAS  Google Scholar 

  3. J. W. Cahn, MRS Bulletin (March/April), 9 (1986).

    Google Scholar 

  4. D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984).

    Article  CAS  Google Scholar 

  5. D. Shechtman and I. Blech, Metall. Trans. 16A, 1005 (1985).

    CAS  Google Scholar 

  6. P. W. Stephens and A. I. Goldman, Phys. Rev. Lett. 56, 1168 (1986)

    Article  CAS  Google Scholar 

  7. P. W. Stephens and A. I. Goldman, Phys. Rev. Lett. 57, 2331 (1986).

    Article  Google Scholar 

  8. V. Elser, Phys. Rev. Lett. 54, 1730 (1985).

    Article  Google Scholar 

  9. P. Guyot and M. Audier, Philos. Mag. B52, L15 (1985).

    Google Scholar 

  10. V. Elser and C. L. Henley, Phys. Rev. Lett. 55, 2883 (1985).

    Article  CAS  Google Scholar 

  11. P. Ramachandrarao and G. V. S. Sastry, Pramana 25, L225 (1985).

    Article  CAS  Google Scholar 

  12. V. Elser, in Proceedings of the XVth International Colloquium on Group Theoretical Methods in Physics ,Vol. 1, eds. R. Gilmore and D. H. Feng (World Scientific Press, Singapore, 1987).

    Google Scholar 

  13. D. Levine and P. J. Steinhardt, Phys. Rev. B34, 596 (1986).

    Google Scholar 

  14. E. E. Cherkashin, P. L. Kripyakevich, and G. I. Oleksiv, Sov. Phys. Crystallogr. 8, 681 (1964).

    Google Scholar 

  15. C. L. Henley, unpublished.

    Google Scholar 

  16. M. A. Marcus, H. S. Chen, G. P. Espinosa and C. -L. Tsai, Solid State Comm. 58, 227 (1986).

    Article  CAS  Google Scholar 

  17. Y. Ma, E. A. Stern, and F. W. Gayle, unpublished.

    Google Scholar 

  18. V. Elser, Phys. Rev. B32, 4892 (1985).

    Article  CAS  Google Scholar 

  19. M. A. Marcus and V. Elser, Phil. Mag. B54, L101, (1986).

    Article  CAS  Google Scholar 

  20. H. S. Chen, A. R. Kortan, and J. M. Parsey, Jr., unpublished.

    Google Scholar 

  21. J. Q. Broughton, G. H. Gilmer, and K. A. Jackson, Phys. Rev. Lett. 49, 1496 (1982).

    Article  CAS  Google Scholar 

  22. L. A. Bendersky and S. D. Ridder, J. Mat. Res. 1, 405 (1986).

    Article  CAS  Google Scholar 

  23. R. J. Schaefer, Scripta Met. 20, 1187 (1986).

    Article  CAS  Google Scholar 

  24. B. Dubost, J. M. Lang, M. Tanaka, P. Sainfort, and M. Audier, Nature 326, 4 (1986).

    Google Scholar 

  25. W. Ohashi and F. Spaepen, to appear in Nature (1987).

    Google Scholar 

  26. G. D. Scott and D. M. Kilgour, J. Phys. D2, 863 (1969).

    Article  Google Scholar 

  27. C. L. Henley, Phys. Rev. B 34, 797 (1986).

    Article  Google Scholar 

  28. T. C. Lubensky, J. E. S. Socolar, P. J. Steinhardt, P. A. Bancel, and P. A. Heiney, Phys. Rev. Lett. 57, 1440 (1986).

    Article  CAS  Google Scholar 

  29. J. D. Budai, J. Z. Tischler, A. Habenschuss, G. E. Ice, and V. Elser, Phys. Rev. Lett. 58, 2304 (1987).

    Article  CAS  Google Scholar 

  30. Ordinary elastic strain may mend a tear and produce instead a dislocation. Dislocations are discussed in: D. Levine, T. C. Lubensky, S. Ostlund, S. Ramaswamy, P. J. Steinhardt, and J. Toner, Phys. Rev. Lett. 54, 1520 (1985).

    Article  CAS  Google Scholar 

  31. J. L. Robertson, M. E. Misenheimer, S. C. Moss, and L. A. Bendersky, Acta. Metall. 34, 2177 (1986).

    Article  CAS  Google Scholar 

  32. C. H. Chen, J. P. Remeika, G. P. Espinosa, and A. S. Cooper, Phys. Rev. B 35, 7737 (1987).

    Article  CAS  Google Scholar 

  33. P. M. Horn, W. Malzfeldt, D. P. DiVincenzo, J. Toner, and R. Gambino, Phys. Rev. Lett. 57, 1444 (1986).

    Article  CAS  Google Scholar 

  34. The quoted values of ΔAexp follow from the assumption δGHWHM=[(log4)/3]1/2 δGrms(valid for symmetric gaussian peak shapes).

    Google Scholar 

  35. P. A. Heiney, P. A. Bancel, P. M. Horn, J. L. Jordan, S. LaPlaca, J. Angilello, and F. W. Gayle, to appear in Science (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Elser, V. (1988). The Growth of Icosahedral Phase. In: Amann, A., Cederbaum, L.S., Gans, W. (eds) Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics. NATO ASI Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3005-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3005-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7850-4

  • Online ISBN: 978-94-009-3005-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics