Skip to main content

Model Studies of Background Ozone Formation

  • Chapter
Tropospheric Ozone

Part of the book series: NATO ASI Series ((ASIC,volume 227))

Abstract

Because of inhomogeneity in the NOx distribution, the troposphere can be divided into several net production and net loss regions for O3. The net production regions include the industrial area, the free troposphere, and the biomass burning area. The net loss regions are the oceanic boundary layer and clean continental boundary layer. In summer, the net production and the net loss are about the same magnitude as the O3 flux from the stratosphere. In winter, the production of O3 depends critically on nighttime reactions involving NO3 and N2O5. Without these reactions, the O3 production in winter can be as large as in summer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldaz, L., ‘Flux measurements of atmospheric ozone over land and water,’ J. Geophys. Res., 74, 6943–6946, 1969.

    Article  Google Scholar 

  • Barrie, L. A., R.M. Hoff, and S.M. Daggupaty, ‘The influence of mid-latitude pollution sources on haze in the Canadian Arctic,’ Atmospheric Environ., 15, 1407–1420, 1981.

    Article  Google Scholar 

  • Beck, S. M., et al., ‘Operational overview of NASA GTE/CITE 1 airborne instrument intercomparisons: Carbon monoxide, nitric oxide, and hydroxyl instrumentation,’ J. Geophy. Res., 92, 1977–1985, 1987.

    Article  Google Scholar 

  • Bollinger, M. J., Chemiluminescent measurements of the oxides of nitrogen in the clean troposphere and atmospheric chemistry implications, Ph.D. Thesis, Department of Chemistry, University of Colorado, Boulder, Colorado, 1982.

    Google Scholar 

  • Chameides, W. L., D.D. Davis, M.O. Rodgers, J. Bradshaw, S. Sandholm, G. Sachse, G. Hill, G. Gregory, and R. Rasmussen, ‘Net ozone photochemical production over the eastern and central north Pacific as inferred from GTE/CITE1 observations during Fall 1983,’ J. Geophys. Res., 92, 2131–2152, 1987.

    Article  Google Scholar 

  • Chatfield, R. B., and P.J. Crutzen, ‘Sulfur dioxide in remote oceanic air: Cloud transport of reactive precursors,’ J. Geophys. Res., 89, 7111–7132, 1984.

    Article  Google Scholar 

  • Chatfield, R., and H. Harrison, ‘Tropospheric ozone II. Variations along a meridional band,’ J. Geophys. Res., 82, 5969–5976, 1977.

    Article  Google Scholar 

  • Colbeck, I., and R.M. Harrison, ‘Dry deposition of ozone: some measurements of deposition velocity and of vertical profiles to 100 meters,’ Atmos. Environ., 19, 1807–1818, 1985.

    Article  Google Scholar 

  • Cox, R. A., A.E.J. Eggleton, R.G. Derwent, J.E. Lovelock, and D.E. Pack, ‘Long-range transport of photochemical ozone in North-western Europe,’ Nature, 255, 118–121, 1975.

    Article  Google Scholar 

  • Crutzen, P. J., ‘The role of NO and NO2 in the chemistry of the troposphere and stratosphere,’ Am. Rev. Earth Planet. Sci., 7, 443–472, 1979.

    Article  Google Scholar 

  • Crutzen, P. J. and L. T. Gidel, ‘A two-dimensional photochemical model of the atmosphere, 2, The tropospheric budgets of the anthropogenic chloracarbons, CO, CH4, CH3C1, and the effect of various NOX sources on tropospheric ozone,’ J. Geophys. Res., 88, 6641–6661, 1983.

    Article  Google Scholar 

  • Crutzen, P. J., L.E. Heidt, J.P. Krasnec, W.H. Pollock, and W. Seiler, ‘Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3C1, and COS,’ Nature, 282, 253–256, 1979.

    Article  Google Scholar 

  • Danielsen, E. F., and V.A. Mohnen, ‘Project dust storm report: ozone transport, in situ measurements, and meteorological analyses of tropopause folding,’ J. Geophys. Res., 82, 5867–5877, 1977.

    Article  Google Scholar 

  • Davis, L. I., Jr., J.V. James, C.C. Wang, C. Guo, P.T. MOrns, and J. Fishman, ‘OH measurement near the Intertropical Convergence Zone in the Pacific,’ J. Geophys. Res., 92, 2020–2024, 1987.

    Article  Google Scholar 

  • Delany, A. C., P. Haagensen, S. Walters, A.F. Wartburg, and P.J. Crutzen, ‘Photochemically produced ozone in the emission from large-scale tropical vegetation fires,’ J. Geophys. Res., 90, 2425–2429, 1985.

    Article  Google Scholar 

  • Dickerson, R. R., ‘Measurements of reactive nitrogen compounds in the free troposphere,’ Atmos. Environ., 18, 2585–2593, 1984.

    Article  Google Scholar 

  • Drummond, J. N. D.H. Ehhalt, and A. Volz, ‘Measurements of nitric oxide between 0–12 km altitude and 60°N–60°S latitude obtained during STRATOZ IV,’ J. Geophys. Res., submitted, 1987.

    Google Scholar 

  • Ehhalt, D. H., and J.W. Drummond, ‘The tropospheric cycle of NOX, in Chemistry of the Unpolluted and Polluted Troposphere,’ Eds. H. W. Georgii and W. Jaeschke, published by Reidel, Dordrecht, Holland, 1982.

    Google Scholar 

  • Fabian, P., W.F. Libby, and C.E. Palmer, ‘Stratospheric residence time and interhemispheric mixing of strontium 90 from fallout in rain,’ J. Geophys. Res., 73, 3611–3616, 1968.

    Article  Google Scholar 

  • Fabian, P., and P.G. Pruchniewiez, ‘Meridonal distribution of ozone in the troposphere and its seasonal variation,’ J. Geophys. Res., 82, 2063–2073, 1977.

    Article  Google Scholar 

  • Fishman, J., S. Solomon, and P.J. Crutzen, ‘Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone,’ Tellus, 31, 432–446, 1979.

    Article  Google Scholar 

  • Fishman, J., F.M. Vukovich, E.V. Browell, ‘The photochemistry of synoptic-scale ozone synthesis: implications for the global tropospheric ozone budget,’ J. of Atm. Chemistry, 3, 299–320, 1986.

    Article  Google Scholar 

  • Fehsenfeld, F. C., M.J. Bollinger, S.C. Liu, D.D. Parrish, M. McFarland, M. Trainer, D. Kley, P.C. Murphy, D.L. Albritton, and D.H. Lenschow, ‘A study of ozone in the Colorado mountains,’ J. Atmos. Chem., 1, 87–105, 1983.

    Article  Google Scholar 

  • Galbally, I. E., and C.R. Roy, ‘Destruction of ozone at the earth’s surface,’ Quart. J. Royal Met. Sco., 106, 599–620, 1980.

    Article  Google Scholar 

  • Gidel, L. T., ‘Cumulus cloud transport of transient tracers,’ J. Geophys. Res., 88, 6587–6599, 1983.

    Article  Google Scholar 

  • Greenfelt, P., and J. Schjoldager, ‘Photochemical oxidants in the troposphere: A mounting menace,’ Ambio, 13, 61–67, 1984.

    Google Scholar 

  • Guicherit, R., and H. VanDop, ‘Photochemical production of ozone in Western Europe (1971–1975) and its relation to meterology,’ Atmos. Environ., 11, 145–156, 1977.

    Article  Google Scholar 

  • Hov, O., ‘Ozone in the troposphere: high level pollution,’ Ambio, 13, 73–79, 1984.

    Google Scholar 

  • Hov, O., and R. G. Derwent, ‘Sensitivity studies of the effects of model formulation on the evaluation of control strategies for photochemical air pollution formation in the United Kingdom,’ J. of Air Pollution Control Assoc., 31, 1260–1267, 1981.

    Google Scholar 

  • Hov, O., J. Schjoldager, and B.M. Wathne, ‘Measurement and modeling of concentrations of terpenes in coniferous forest air,’ J. Geophys. Res., 88, 10679–10688, 1983.

    Article  Google Scholar 

  • Isaksen, I. S. A., O. Hov, and E. Hesstvedt, ‘Ozone generation over rural areas,’ Environ. Sci. & Tech., 12, 1279–1284, 1978.

    Article  Google Scholar 

  • Isaksen, I. S. A., O. Hov, S.A. Penkett, and A. Semb, ‘Model analysis of the measured concentration of organic gases in the Norwegian Arctic,’ J. of Atmos. Chem., 3, 13–27, 1985.

    Google Scholar 

  • Jacob, D. J., and S.C. Wofsy, ‘Photochemistry of Biogenic Emissions over the Amazon forest,’ J. Geophys. Res., in press, 1987.

    Google Scholar 

  • Johansson, C., ‘Field measurements of emission of nitrogen oxide from fertilized and unfertilized forest soils in Sweden,’ J. of Atmos. Chem., 1, 429–435, 1984.

    Article  Google Scholar 

  • Junge, C. E., Air Chemistry and Radioactivity, Academic Press Inc., New York and London, 1963.

    Google Scholar 

  • Kasting, J. F., and H. B. Singh, ‘Nonmethane hydrocarbons in the troposphere: Impact on the odd hydrogen and odd nitrogen chemistry,’ J. Geophys. Res., 91, 13239–13256, 1986.

    Article  Google Scholar 

  • Kirchhoff, V. W. J. H., ‘Ground based ozone measurements in an equatorial rain forest,’ J. Geophys. Res., submitted, 1987.

    Google Scholar 

  • Kley, D., J.W. Drummond, M. McFarland, and S.C. Liu, ‘Tropospheric profiles of NO,’ J. Geophys. Res., 86, 3153–3161, 1981.

    Article  Google Scholar 

  • Ko, M. K. xW., M.B. McElroy, D.K. Weisenstein, and N.D. Sze, ‘Lightning: A possible source of stratospheric odd nitrogen,’ J. Geophys. Res., 91, 5395–5405, 1986.

    Article  Google Scholar 

  • Lamb, B., A. Guenther, D. Gay, and H. Westber, ‘A national inventory of biogenic hydrocarbon emissions,’ Atmospheric Environ., in press, 1987.

    Google Scholar 

  • Lenschow, D. H., R. Pearson, Jr., and B.B. Stankor, ‘Measurements of ozone vertical flux to ocean and forest,’ J. Geophy. Res., 87, 8833–8837, 1982.

    Article  Google Scholar 

  • Levy II, H., J.D. Mahlman, W.J. Moxim, and S.C. Liu, ‘Tropospheric ozone: The role of transport,’ J. Geophys. Res., 90, 3753–3772, 1985.

    Article  Google Scholar 

  • Liu, S.C., ‘Possible effects on tropospheric O3 and OH cue to NO emissions,’ Geophys. Res. Lett., 4, 325–328, 1977.

    Article  Google Scholar 

  • Liu, S. C., D. Kley, M. McFarland, J.D. Mahlman, and H. Levy II, ‘On the origin of tropospheric ozone,’ J. Geophys. Res., 85, 7546–7552, 1980.

    Article  Google Scholar 

  • Liu, S.C., M. McFarland, D. Kley, O. Zafirious, and B. Huebert, ‘Tropospheric NOX and O3 budgets in the equatorial Pacific,’ J. Geophys. Res., 88, 1360–1368, 1983.

    Article  Google Scholar 

  • Liu, S. C., and M. Trainer, ‘Tropospheric ozone response to column ozone change,’ J. of Atmospheric Chemistry, in press, 1987.

    Google Scholar 

  • Liu, S. C., M. Trainer, F.C. Fehsenfeld, D.D. Parrish, E.J. Williams, D.W. Fahey, G. Hubler, and P.C. Murphy, ‘Ozone dproduction in the rural troposphere and the implications for regional and global ozone distributions,’ J. Geophys. Res., 92, 4191–4207, 1987.

    Article  Google Scholar 

  • Logan, J. A., ‘Nitrogen oxides in the troposphere: Global and regional budgets,’ J. Geophys. Res., 88, 10785–10807, 1983.

    Article  Google Scholar 

  • Logan, J. A., ‘Tropospheric ozone: Seasonal behavior, trends and anthropogenic influence,’ J. of Geophys. Res., 90, 10463–10482, 1985.

    Article  Google Scholar 

  • Logan, J. A., M.J. Prather, S.C. Wofsy, and M.B. McElroy, ‘Tropospheric chemistry: A global perspective,’ J. Geophys. Res., 86, 7210–7254, 1981

    Article  Google Scholar 

  • Mahlman, J. D., H. Levy II, and W.J. Moxim, ‘Three-dimensional tracer structure and behavior as simulated in two ozone precursor experiments, J. Atmos. Sci., 37, 655–685, 1980.

    Article  Google Scholar 

  • McFarland, M., D. Kley, J.W. Drummond, A.L. Schmeltekopf, and R.H. Winkler, ‘Nitric oxide measurements in the equatorial Pacific region,’ Geophys. Res. Lett., 6, 605–608, 1979.

    Article  Google Scholar 

  • Mozurkewich, M., P.M. McMurry, A. Gupta, and J.G. Calvert, ‘Mass accommodation coefficient for HO2 radicals on aqueous particles,’ J. Geophys. Res., 92, 4163–4170, 1987.

    Article  Google Scholar 

  • Noxon, J. F., ‘Atmospheric nitrogen fixation by lightning,’ Geophys. Res. Lett., 3, 463–465, 1976.

    Article  Google Scholar 

  • Noxon, J. F., ‘NO3 in the Mid-Pacific Troposphere,’ J. of Geophy. Res., 88, 11017–11021, 1983.

    Article  Google Scholar 

  • Parrish, D. D., B. Huebert, R.B. Norton, M.J.Bollinger, S.C. Liu, P.C. Murphy, D.L. Albritton, and F.C. Fehsenfeld, ‘Measurements of HNO3 and NO3 particulates at a rural site in the Colorado mountains,’ J Geophys. Res. 91, 5379–5393, 1986.

    Article  Google Scholar 

  • Penkett, S. A., and K.A. Brice, ‘The spring maximum in photo-oxidants in the Northern Hemisphere troposphere,’ Nature, 319, 655–6568, 1986.

    Article  Google Scholar 

  • Perner, D., U. Platt, M. Trainer, G. Hubler, J. Drummond, W. Junkermann, J. Rudolph, B. Schubert, A. Volz, and D.H. Ehhalt, ‘Measurements of tropospheric OH concentrations: A comparison of field data with model predictions,’ J. Atmospheric Chemistry, in press, 1987.

    Google Scholar 

  • Platt, U., A.M. Winer, H.W. Biermann, R. Atkinson, J.N. Pitts, Jr., ‘Measurement of nitrate radical concentrations in continental air,’ Environ. Sci. Technol., 18, 365–369, 1984.

    Article  Google Scholar 

  • Rahn, K. A., and R.J. McCaffrey, ‘Long-range transport of pollution aerosol to the Arctic: a problem without borders,’ in Proceedings WMO Symposium on the Long-Range Transport of Pollutants, Sofia (WMO-538), 1979.

    Google Scholar 

  • Research Triangle Institute, Investigation of rural oxidant levels as related to urban hydrocarbon control strategies, EPA-450/3–75–036, Environmental Protection Agency, Research Triangle Park, N.C., 359 pp, 1975.

    Google Scholar 

  • Ridley, B. A., M.A. Carroll, and G.L. Gregory, ‘Measurements of nitric oxide in the boundary layer and free troposphere over the Pacific ocean,’ J. Geophys. Res., 92, 2025–2048, 1987.

    Article  Google Scholar 

  • Roberts, J. M., F.C. Fehsenfeld, S.C. Liu, M.J. Bollinger, C. Hahn, D.L. Albritton, and R.E. Sievers, ‘Measurements of aromatic hydrocarbon ratios and NOX concentrations in the rural troposphere: observation of air mass photochemical aging and NOX removal,’ Atmos. Environ., 18, 2421–2432, 1984.

    Article  Google Scholar 

  • Sakamaki, F., M. Okuda, H. Akimoto, and H. Yamazaki, ‘Computer modeling study of photochemical ozone formation in the propane-nitrogen oxides-dry air system, generalized maximum ozone isopleth,’ Environ. Science and Tech., 16, 45–52, 1982.

    Article  Google Scholar 

  • Schiff, H. I. D. Pepper and B. Ridley, ‘Tropospheric NO measurements up to 7 km,’ J. of Geophys. Res., 84, 7895–7897, 1979.

    Article  Google Scholar 

  • Seiler, W. and P. Crutzen, ‘Estimates of the gross and net flux of carbon between the biosphere and the atmosphere from biomass burning,’ Climate Change, 2, 207–247, 1980.

    Article  Google Scholar 

  • Slemr, F., and W. Seiler, ‘Field measurements of NO and NO2 emissions from fertilized and unfertilized soils,’ J. Atmospheric Chemistry, 2, 1–24, 1984.

    Article  Google Scholar 

  • Torres, A. L., and H. Buchan, ‘Tropospheric nitric oxide measurements over the Amazon basin,’ J. Geophys. Res., in press, 1987.

    Google Scholar 

  • Trainer, M., E.Y. Hsie, S.A. McKeen, R. Tallamraju, D.D. Parrish, F.C. Fehsenfeld, and S.C. Liu, ‘Impact of natural hydrocarbons on hydroxyl and peroxy radicals at a remote site,’ J. Geophys. Res., submitted, 1987.

    Google Scholar 

  • Trainer, M., E.J. Williams, D.D. Parrish, M.P. Buhr, F.C. Fehsenfeld, S.C. Liu, E.J. Allwine, and H.H. Westberg, ‘Impact of natural hydrocarbons on rural ozone: Modeling and observations,’ Nature, sumbitted, 1987.

    Google Scholar 

  • U.S. EPA, Uses, limitations and technical basis of procedures for quantifying relationships between photochemical oxidants and precursors, US Environmental Protection Agency, Research Triangel Park, NC, 1977; EPA 450/2–77–021a.

    Google Scholar 

  • Vukovich, F. M., W.D. Bach, Jr., B.W. Crissman and W.J. King, ‘On the relationship between high ozone in the rural surface layer and high pressure systems,’ Atmos. Environ., 11. 967–984, 1977.

    Article  Google Scholar 

  • Wesely, M. L., ‘Turbulent transport of ozone to surfaces common in the eastern half of the United States,’ Trace Atmospheric Constituents, Edited by S.E. Schwartz, J. Wiley and Sons, 345–370, 1983.

    Google Scholar 

  • Wesely, M. L., D.R. Cook, and R.M. Williams, ‘Field measurement of small ozone fluxes to snow, wet bare soil, and lake water,’ Boundary Layer Meteorology, 20, 459–471, 1981.

    Article  Google Scholar 

  • White, W. H., D.E. Patterson, and W.E. Wilson, Jr., ‘Urban exports to the nonurban troposphere: Results from Project MISTT,’ J. Geophys. Res., 88, 10745–10752, 1983.

    Article  Google Scholar 

  • Williams, E. J., D.D. Parrish, and F.C. Fehsenfeld, ‘Determination of nitrogen oxide emissions from soils: Results from a grassland site in Colorado, United States,’ J. Geophys. Res., 92, 2173–2181, 1987.

    Article  Google Scholar 

  • Worsnop, D.R., M.S. Zahniser, C.E. Kolb, L.R. Sharfman, J.A. Gardner, and P. Davidovits, ‘Determination of H02 sticking coefficient on water droplets,’ EOS, 68, 270–270, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company

About this chapter

Cite this chapter

Liu, S.C. (1988). Model Studies of Background Ozone Formation. In: Isaksen, I.S.A. (eds) Tropospheric Ozone. NATO ASI Series, vol 227. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2913-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2913-5_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7811-5

  • Online ISBN: 978-94-009-2913-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics