Skip to main content

Part of the book series: Solid Earth Sciences Library ((SESL,volume 4))

Abstract

The Earth is often regarded as a heat engine because many of the important phenomena of the Earth are caused by its internal thermal energy. The phenomena include such a large scale one as global plate tectonics and small scale ones as local seismicity, crustal movements, volcanism and hydrocarbon maturation. To elucidate how this giant heat engine operates, the nature and distribution of its heat sources, internal temperature and mode of heat transfer must be clarified. Through such studies, the mechanisms of Earth’s processes are inferred and the thermal history and tectonic evolution of the Earth can be reconstructed. However, the path of such research is not an easy one, because the problem is essentially an inverse one both in time and space with non-unique solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaogi, N. and Akimoto, S.: 1979, ‘High Pressure Equilibria in a Garnet Lherzolite with Special Reference to Mg2+ - Fe2+ Portioning among Constituent Minerals’, Phys. Earth Planet. Interiors 19, 31–51.

    Google Scholar 

  • Anderson, R. N.: 1980, ‘Update of Heat Flow in the East and Southeast Asian Seas’, in D. Hayes (ed.), Tectonic/Geologic Evolution of Southeast Asia; Geophys. Monogr. 23, Amer. Geophys. Un., Washington D.C., 319–326.

    Google Scholar 

  • Anderson, R. N. and Skilbeck, J. N.: 1980, Oceanic Heat Flow, in C. Emiliani (ed.), The Sea, Wiley-Interscience, New York, 7, 489–523.

    Google Scholar 

  • Anderson, O. L.: 1981, ‘Temperature Profiles in the Earth’, in R. J. O’Connell and W. S. Fyfe (eds.), Evolution of the Earth, Geodynamics Series, 5, AGU/GSA, 19–27.

    Google Scholar 

  • Andrews, D. J. and Sleep, N. H.: 1974, ‘Numerical Modeling of Tectonic Flow Behind Island Arcs’, Geophys. J. Roy. Astr. Soc. 38, 237–251.

    Google Scholar 

  • Birch, F.: 1954, The Present State of Geothermal Investigation’, Geophys. 19, 645–659.

    Google Scholar 

  • Birch, F.: 1958, ‘Differentiation of the Mantle’, Geol. Soc. Amer. Bull. 69, 483–486.

    Google Scholar 

  • Blackwell, D. D., Bowen, R. G., Hull, D. A. Riccio, J., and Steele, J. L.: 1982, ‘Heat Flow, Arc Volcanism and Subduction in Northern Oregon’, J. Geophys. Res. 87, 8735–8754.

    Google Scholar 

  • Bodmer, Ph., England, P. C, Kissling, E. and Rybach, L.: 1979, ‘On the Correction of Subsurface Temperature Measurements for the Effects of Topographic Relief, Part II; Application to Temperature Measurements in the Central Alps’, in V. Čermák and L. Rybach (eds.), Terrestrial Heat Flow in Europe, Springer, 78–87.

    Google Scholar 

  • Bodri, L. and Bodri, B.: 1978, ‘Numerical Investigation of Tectonic Flow in Island-Arc Areas’, Tectonophys. 50, 163–175.

    Google Scholar 

  • Boyd, F. R.: 1973, ‘A Pyroxene Geotherm’, Geochim. Cosmochim. Acta 37, 2533–2546.

    Google Scholar 

  • Bram, K.: 1979, ‘Heat Flow Measurements in the Federal Republic of Germany’, in V. Čermák and L. Rybach (eds.), Terrestrial Heat Flow in Europe, Springer-Verlag, 191–196.

    Google Scholar 

  • Bullard, E. C, Maxwell, A. E. and Revelle, R.: 1956, ‘Heat Flow Through the Deep Sea Floor’, Adv. Geophys. 3, 153–181.

    Google Scholar 

  • Burke, K.: 1975, ‘Hot Spots and Aulacogens of the European Margin’, Leicester/Shropshire, Oslo/ Fen, Geol. Soc. Amer. Abstr. 7, 34–35.

    Google Scholar 

  • Burns, R. E.: 1964, ‘Sea Bottom Heat-Flow Measurements in the Andaman Sea’, J. Geophys. Res. 69, 4918–4919.

    Google Scholar 

  • Calvalho, H. da. S., Siswoyo, P., Thamrin, M. and Vacquier, V.: 1980, Terrestrial Heat Flow in the Tertiary Basin of Central Sumatra’, Tectonophys. 69, 163–188.

    Google Scholar 

  • Čermák, V. and Rybach, L. (eds.): 1979, Terrestrial Heat Flow in Europe, Springer-Verlag, Berlin, Heidelberg, New York, 328 p.

    Google Scholar 

  • Chapman, D. S. and Pollack, H. N.: 1975, ‘Global Heat Flow: A New Look’, Earth Planet. Sci. Lett. 28, 23–32.

    Google Scholar 

  • Chapman, D. S. and Pollack, H. N.: 1977, Heat Flow and Heat Production in Zambia: Evidence for Lithosphere Thinning in Central Africa’, Tectonophys. 41, 79–100.

    Google Scholar 

  • Chapman, D. S. and Pollack, H. N.: 1980, ‘Global Heat Flow: Spherical Harmonic Representation’, EOS, Trans. Am. Geophys. Un. 61, 383.

    Google Scholar 

  • Clark, S. P.: 1957, Radiative Transfer in the Earth’s Mantle’, Trans. Amer. Geophys. Un. 38, 931–938.

    Google Scholar 

  • Collette, B. J.: 1971, ‘Vertical Crustal Movements in the North Sea Area Through Geological Time’, in F. M. Delany (ed.), ICSU/SCOR Working Party 31, Symposium, Cambridge, 1970, The Geology of the East Atlantic Margin, H.M.S.O., London.

    Google Scholar 

  • Coney, P. J., Jones, D. L. and Monger, J. W. H.: 1980, ‘Cordilleran Suspect Terranes’, Nature 288, 329–333.

    Google Scholar 

  • Corliss, J. B., Dymond, J. R., Gordon, L. I., Edmond, J. M., Von Herzen R. P., Bullard, R., Green, K. E., Williams, D. L., Bainbridge, A., Crane, K. and van Andel, T. H.: 1979, ‘Submarine Thermal Springs on the Galapagos Rift’, Science 203, 1073–1083.

    Google Scholar 

  • Crough, S. T. and Thompson, G. A.: 1976, Thermal Model of Continental Lithosphere’, J. Geophys. Res. 81, 4857–4862.

    Google Scholar 

  • Davies, G. F.: 1980a, ‘Review of Oceanic and Global Heat Flow Estimates’, Rev. Geophys. Space, Phys. 18, 718–722.

    Google Scholar 

  • Davies, G. F.: 1980b, Thermal Histories of Convective Earth Models and Constraints on Radiogenic Heat Production in the Earth’, J. Geophys. Res. 85, 2517–2530.

    Google Scholar 

  • Decker, E. R. and Burcher, G. J.: 1977, ‘Geothermal Studies in Antarctica’, U.S. Antarct. J. 12, 102–104.

    Google Scholar 

  • Degens, E. T.,Von Herzen R. P. and Wong How-Kim: 1971, ‘Lake Tanganika: Water Chemistry, Sediments, Geological Structure’, Naturwiss. 58, 229–241.

    Google Scholar 

  • Degens, E. T., Von Herzen, R. P., Wong How-Kim, Deuser, W. G. and Jannasch, H. W.: 1973, ‘Lake Kivu: Structure, Chemistry and Biology of an East African Rift Lake’, Geol. Rundschau 62, 245–277.

    Google Scholar 

  • Dickinson, W. R. and Snyder, W. S.: 1979, ‘Geometry of Subducted Slabs Related to San Andreas Transform’, J. Geol. 87, 609–627.

    Google Scholar 

  • England, P. C. and Richardson, S. W.: 1980, ‘Erosion and the Age-Dependence of Continental Heat Flow’, Geophys. J. Roy. Astr. Soc. 62, 421–438.

    Google Scholar 

  • Fukao, Y.: 1969, ‘On the Radiative Heat Transfer and the Thermal Conductivity in the Upper Mantle’, Bull. Earthq. Res. Inst. 47, 549–569.

    Google Scholar 

  • Furlong, K. P., Chapman, D. S. and Alfeld, P. W.: 1982, Thermal Modelling of the Geometry of Subduction with Implications for the Tectonics of the Overriding Plate’, J. Geophys. Res. 87, 1786–1802.

    Google Scholar 

  • Gilvarry, J. J.: 1956, The Lindemann and Grüneisen Laws’, Phys. Rev. 102, 308–316.

    Google Scholar 

  • Haenel, R.: 1983, ‘Geothermal Investigations in the Rhenish Massif’, in K. Fuchs, K. von Gehlen, H. Mälzer, H. Murawski and A. Semmel (eds.), Plateau Uplift, Springer-Verlag, 228–246.

    Google Scholar 

  • Hamza, V. M. and Verma, R. K.: 1969, The Relationship of Heat Flow with Age of Basement Rock’, Bull. Volcanologique 33, 123–152.

    Google Scholar 

  • Hasebe, K., Fujii, N. and Uyeda, S.: 1970, Thermal Processes under Island Arcs’, Tectonophys 10, 335–355.

    Google Scholar 

  • Heestand, R. L. and Crough, S. T.: 1981, The Effect of Hot Spots on the Oceanic Age-Depth Relation’, J. Geophys. Res. 86, 6107–6114.

    Google Scholar 

  • Hilde, T. W. C. and S. Uyeda: 1983, ‘Trench Depth: Variation and Significance’, in T. W. C. Hilde and S. Uyeda (eds.), Geodynamics of the Western Pacific-Indonesian Region, Geodynamics Series, 11, Amer. Geophys. Un./Geol. Soc. Amer., 75–89.

    Google Scholar 

  • Hobart, M., Anderson, R. N. and Uyeda, S.: 1979, ‘Heat Transfer in the Mariana Trough’, EOS 60, 383.

    Google Scholar 

  • Hoffers, B.: 1981, ‘A Model for Hydrothermal Convection in the Rheingraben and its Tectonic Implications’, Tectonophys. 73, 141–149.

    Google Scholar 

  • Honda, S.: 1982, ‘Numerical Analysis of Layered Convection-Marginal Stability and Finite Amplitude Analysis’, Bull. Earthq. Res. Inst. 57, 273–302.

    Google Scholar 

  • Honda, S.: 1983, ‘Mantle Convection — A Review on Recent Topics’, Nagare 2, 341–354, (in Japanese).

    Google Scholar 

  • Honda, S.: 1985, Thermal Structure Beneath the Northeast Japan’, Tectonophys. 112, 69–102.

    Google Scholar 

  • Honda, S. and Uyeda, S.: 1983, Thermal process in Subduction Zones’, in D. Shimozuru and I. Yokoyama (eds.), Arc Volcanism: Physics and Tectonics, Terra Sci. Pub. Co., Tokyo, 117–140.

    Google Scholar 

  • Hsui, A. and Toksöz, M. N.: 1979, ‘The Evolution of Thermal Structures Beneath a Subduction Zone’, Tectonophys. 60, 43–60.

    Google Scholar 

  • Jeffreys, H.: 1929, The Earth, 2nd ed., Cambridge.

    Google Scholar 

  • Jessop, A. M., Hobart, M. A. and Sclater, J. G.: 1976, The World Heat Flow Data Collection — 1975. Geothermal Series 5, Earth Phys. Branch, Ottawa, 125 p.

    Google Scholar 

  • Jordan, T. H.: 1981, ‘Continents as a Chemical Boundary Layer’, Phil. Roy. Soc. Lond. A. 301, 359–373.

    Google Scholar 

  • Kappelmeyer, O. and Haenel, R.: 1974, ‘Geothermics with Special Reference to Application’, Geoexplor. Monogr. Ser. 1, 4, Gebr. Bornträger, Stuttgart, 238 p.

    Google Scholar 

  • Kelvin, Lord: 1862, ‘On the Secular Cooling of the Earth’, Roy. Soc. Edinburgh, Trans. 23, 157–169.

    Google Scholar 

  • Kono, Y. and Amano, M.: 1978, Thickening Model of the Continental Lithosphere’, Geophys. J. Roy. Astr. Soc. 54, 405–416.

    Google Scholar 

  • Lachenbruch, A. H.: 1970: ‘Crustal Temperature and Heat Production: Implication of the Linear Heat Flow Relation’, J. Geophys. Res. 75, 3219–3300.

    Google Scholar 

  • Lachenbruch, A. H. and Marshall, B. V.: 1966, ‘Heat Flow Through the Arctic Ocean Floor — the Canada Basin-Alpha Rise Boundary’, J. Geophys. Res. 71, 1224–1248.

    Google Scholar 

  • Lachenbruch, A. H. and Sass, J. S.: 1977, ‘Heat Flow in the United States and Thermal Regime of the Crust’, in J. G. Heacock (ed.), The Earth’s Crust, Geophys. Monogr. 20, Am. Geophys. Un. Washington D.C., 626–675.

    Google Scholar 

  • Lachenbruch, A. H. and Sass, J. S.: 1980, ‘Heat Flow and Energetics of the San Andreas Fault Zone’, J. Geophys. Res. 85, 6185–6222.

    Google Scholar 

  • Langseth, M. G. and Anderson, R. N.: 1979, ‘Correction’, J. Geophys. Res. 84, 1139–1140.

    Google Scholar 

  • Langseth, M. G. and Von Herzen, R. P.: 1970, ‘Heat Flow Through the Floor of the World Oceans’, in A. E. Maxwell (ed.), The Sea, Instersci., New York, 299–352.

    Google Scholar 

  • Lawver, L. A., Williams, D. L. and Von Herzen, R. P.: 1975, ‘A Major Geothermal Anomaly in the Gulf of California’, Nature, 257, No. 5221, 23–28.

    Google Scholar 

  • Lee, W. H. K.: 1970, ‘On the Global Variations of Terrestrial Heat Flow’, Phys. Earth. Planet. Inter. 2, 332–341.

    Google Scholar 

  • Lee, W. H. K. and MacDonald, G. J. F.: 1963, ‘The Global Variation of Terrestrial Heat Flow’, J. Geophys. Res. 68, 6481–6492.

    Google Scholar 

  • Lee, W. H. K. and Uyeda, S.: 1965, ‘Review of Heat Flow Data’, in W. H. K. Lee (ed.), Terrestrial Heat Flow, Geophys. Monograph. 8, Amer. Geophys. Un. Washington, D.C., 87–190.

    Google Scholar 

  • Le Pichon, X. and Sibuet, J. C: 1981, ‘Passive Margins: A Model of Formation’, J. Geophys. Res. 86, 3708–3720.

    Google Scholar 

  • Lister, C. R. B.: 1972, ‘On the Thermal Balance of a Midocean Ridge’, Geophys. J. Roy. Astr. Soc. 26, 515–535.

    Google Scholar 

  • Lister, C. R. B.: 1980, ‘Heat Flow and Hydrothermal Circulation’, Ann. Rev. Earth Planet. Sci. 8, 95–117.

    Google Scholar 

  • Lubimova, E. A.: 1958, ‘Thermal History of the Earth with Consideration of the Variable Thermal Conductivity of the Mantle’, Geophys. J. Roy. Astr. Soc. 1, 115–134.

    Google Scholar 

  • Lysak, S. V.: 1978, ‘The Baikal Heat Flow’, Tectonophys. 45, 87–93.

    Google Scholar 

  • MacDonald, G. J. F.: 1959, ‘Calculations on the Thermal History of the Earth’, J. Geophys. Res. 64, 1967–2000.

    Google Scholar 

  • MacDonald, K. C., Becker, K., Spiess, F. N. and Ballard, R.: 1980, ‘Hydrothermal Heat Flux of the “Black Smoker” Vents on the East Pacific Rise’, Earth. Planet Sci. Lett. 48, 1–7.

    Google Scholar 

  • McKenzie, D. P.: 1967, ‘Some Remarks on Heat Flow and Gravity Anomalies’, J. Geophys. Res. 72, 6261–6271.

    Google Scholar 

  • McKenzie, D. P.: 1978, ‘Some Remarks on the Development of Sedimentary Basins’, Earth Planet. Sci. Lett. 40, 25–32.

    Google Scholar 

  • McKenzie, D. P.: 1981, ‘The Variation of Temperature with Time and Hydrocarbon Maturation in Sedimentary Basins Formed by Extension, Earth Planet. Sci. Lett. 55, 87–98.

    Google Scholar 

  • McKenzie, D. P. and Richter, F. M.: 1981, ‘Parameterized Thermal Convection in a Layered Region and the Thermal History of the Earth’, J. Geophys. Res. 86, 11.667–11.680.

    Google Scholar 

  • McKenzie, D., and Weiss, N.: 1975, ‘Speculations on the Thermal and Tectonic History of the Earth’, Geophys. J. Roy. Astr. Soc. 42, 131–174.

    Google Scholar 

  • Merrier, J. C. and Carter, N. L.: 1975, ‘Pyroxene Geotherms’, J. Geophys. Res. 80, 3349–3362.

    Google Scholar 

  • Minear, J. W. and Toksöz, M. N.: 1970, Thermal Regime of a Downgoing Slab and new Global Tectonics’, J. Geophys. Res. 75, 1397–1419.

    Google Scholar 

  • Oldenburg, D. W.: 1975, ‘A Physical Model for the Creation of the Lithosphere’, Geophys. J. Roy. Astr. Soc. 43, 425–451.

    Google Scholar 

  • O’Nions, R. K., Evenson, N. M. and Hamilton, P. J.: 1979, ‘Geochemical Modelling of Mantle Differentiation and Crustal Growth’, J. Geophys. Res. 84, 6091–6101.

    Google Scholar 

  • Oxburgh, E. R. and Parmentier, E. M.: 1978, Thermal Processes in the Formation of Continental Lithosphere’, Phil. Trans. R. Soc. Lond. A. 288, 415–429.

    Google Scholar 

  • Oxburgh, E. R. and Turcotte, D. L.: 1970, Thermal Structure of Island Arcs’, Geol. Soc. Amer. Bull. 81, 1665–1688.

    Google Scholar 

  • Parsons, B. and McKenzie, D. P.: 1978, ‘Mantle Convection and the Thermal Structure of the Plates’, J. Geophys. Res. 83, 4485–4496.

    Google Scholar 

  • Parsons, B. and Sclater, J. G.: 1977, ‘An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age’, J. Geophys. Res. 82, 803–827.

    Google Scholar 

  • Peltier, W. R. and Javis, G. T.: 1982, ‘Whole Mantle Convection and the Thermal Evolution of the Earth’, Phys. Earth Planet. Inter. 29, 281–304.

    Google Scholar 

  • Pollack, H. N.: 1982, The Heat Flow from the Continents’, Ann. Rev. Earth Planet. Sci. 10, 459–481.

    Google Scholar 

  • Pollack, H. N. and Chapman, D. S.: 1977, ‘On the Regional Variation of Heat Flow, Geotherms, and the Thickness of Lithosphere’, Tectonophys. 38, 279–296.

    Google Scholar 

  • Polyak, B. G. and Smirnov, Ya. B.: 1968, ‘Relationships Between Terrestrial Heat Flow and Tectonics of Continents’, Geotectonics, (Engl. Transi.), 4, 205–213.

    Google Scholar 

  • Rao, R. U. M., Rao, G. V. and Reddy, G. K.: 1982, ‘Age Dependence of Continental Heat Flow -Fantasy and Facts’, Earth Planet. Sci., Lett. 59, 288–302.

    Google Scholar 

  • Rossby, H. T.: 1969, ‘A Study of Bénard Convection with and without Rotation’, J. Fluid, Mech. 36, 309–335.

    Google Scholar 

  • Roy, R. F., Blackwell, D. D. and Birch, F.: 1968, ‘Heat Generation of Plutonic Rocks and Continental Heat Flow Provinces’, Earth Planet. Sci. Lett. 5, 1–12.

    Google Scholar 

  • Rybach, L.: 1976, ‘Die Gesteinsradioaktivität und ihr Einfluss auf das Temperaturfeld in der Kontinentalen Kruste’, J. Geophys. 42, 93–101.

    Google Scholar 

  • Savostin, L. A. and Vlasenko, V. I.: 1974, ‘Results of Geothermal Investigations in the Sea of Okhotsk’, Geotermiya 1–2, 91–95 (in Russian).

    Google Scholar 

  • Sharpe, H. N. and Peltier, W. R.: 1978, ‘Parameterized Convection and Earth’s Thermal History’, Geophys. Res. Lett. 5, 737–740.

    Google Scholar 

  • Sharpe, H. N. and Peltier, W. R.: 1979, ‘A Thermal History Model for the Earth with Parameterized Convection’, Geophys. J. Roy. Astr. Soc. 59, 171–203.

    Google Scholar 

  • Schatz, J. F. and Simmons, G.: 1972, Thermal Conductivity of Earth’s Materials at High Temperatures’, J. Geophys. Res. 77, 6966–6983.

    Google Scholar 

  • Schubert, G., Stevenson, D. and Cassen, P.: 1980, ‘Whole Planet Cooling and Radiogenic Heat Source Contents of the Earth and Moon’, J. Geophys. Res. 85, 2531–2538.

    Google Scholar 

  • Sclater, J. G. and Christie, P. A. F.: 1980, ‘Continental Stretching: An Explanation of the Post-Mid-Cretaceous Subsidence of the Central North Sea Basin’, J. Geophy. Res. 85, 3711–3739.

    Google Scholar 

  • Sclater, J. G. and Francheteau, J.: 1970, The Implications of Terrestrial Heat Flow Observations on Current Tectonic and Geochemical Models of the Crust and Upper Mantle of the Earth’, Geophys. J. Roy. Astr. Soc. 20, 509–542.

    Google Scholar 

  • Sclater, J. G., Jaupart, C. and Galson, D. A.: 1980a, The Heat Flow Through Oceanic and Continental Crust and the Heat Loss of the Earth’, Rev. Geophys. Space Phys. 18, 269–311.

    Google Scholar 

  • Sclater, J. G., Royden, L., Horvàth, F., Burchfiel, B. C., Semken, S. and Stegena, L.: 1980b, The Formation of Intra-Carpathian Basins as Determined from Subsidence Data’, Earth Planet. Sci. Lett. 51, 139–162.

    Google Scholar 

  • Simmons, G. and Horai, K.: 1968, ‘Heat Flow Data 2’, J. Geophys. Res. 73, 6608–6629.

    Google Scholar 

  • Slichter, L. B.: 1941, ‘Cooling of the Earth’, Bull. Geol. Soc. Amer. 52, 561–600.

    Google Scholar 

  • Smirnov, Ya. B.: 1980, Thermal Field of the Territory of the USSR, Main Adminst. Geodesy and Cartography, Council of Ministers, USSR, Moscow, 150 p.

    Google Scholar 

  • Spiess, F. N., MacDonald, K. C, Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Haymaon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J. D., Miller, S. R, Normark, W., Orcutt, J. and Rangin, C.: 1980, ‘East Pacific Rise: Hot Springs and Geophysical Experiments’, Science 207, 1421–1433.

    Google Scholar 

  • Spohn, T. and Schubert, G.: 1982, ‘Modes of Mantle Convection and Removal of Heat from the Earth’s Interior’, J. Geophys. Res. 87, 4682–4696.

    Google Scholar 

  • Stacey, F. D.: 1977, A Thermal Model of the Earth’, Phys. Earth Planet. Interiors 15, 341–348.

    Google Scholar 

  • Stacey, F. D. and Irvine, R. D.: 1977, Theory of Melting: Thermodynamic Basis of Lindemann’s Law’, Austr. J. Phys. 30, 631–640.

    Google Scholar 

  • Stegena, L., Horvath, F., Sclater, J. G. and Royden, L.: 1981, ‘Determination of Paleotemperature by Vitrinite Reflectance Data’, Earth Evolution Sciences 3/4, 292–297.

    Google Scholar 

  • Stevenson, D.: 1980, ‘Applications of Liquid State Physics to the Earth’s Core’, Phys. Earth Planet. Interiors 22, 42–52.

    Google Scholar 

  • Taira, A., Saito, Y. and Hashimoto, M.: 1983, ‘The Role of Oblique Subduction and Strike-Slip Tectonics in the Evolution of Japan’, in T. W. C. Hilde and S. Uyeda (eds.), Geodynamics of the Western Pacific-Indonesian Region, Geodynamics Series 11, Amer. Geophys. Un./Geol. Soc. Amer., 303–316.

    Google Scholar 

  • Tatsumi, Y., Sakuyama, M., Fukuyama, H. and Kushiro, I.: 1983, ‘Generation of Arc Basalt Magmas and Thermal Structure of the Mantle Wedge in Subduction Zone’, J. Geophys. Res. 88, 5815–5825.

    Google Scholar 

  • Tozer, D. C: 1970, ‘Factors Determining the Temperature Evolution of Thermally Convecting Earth Models’, Phys. Earth Planet. Inter. 2, No. 5, 393–398.

    Google Scholar 

  • Tozer, D. C: 1972, ‘The Present Thermal State of the Terrestrial Planets’, Phys. Earth Planet. Inter. 6, 182–197.

    Google Scholar 

  • Turcotte, D. L.: 1980, ‘On the Thermal Evolution of the Earth’, Earth Planet. Sci., Lett. 48, 53–58.

    Google Scholar 

  • Uyeda, S. and Horai, K.: 1964, ‘Terrestrial Heat Flow in Japan’, J. Geophys. Res. 69, 2121–2141.

    Google Scholar 

  • Uyeda, S.: 1980, ‘Review of Heat Flow Studies in the Eastern Asia and Western Pacific Region’, UN ESCAP, CCOPISOPAC, Tech. Bull. 3, 153–169.

    Google Scholar 

  • Uyeda, S. and Watanabe, T.: 1982, ‘Terrestrial Heat Flow in Western South America’, Tectonophys. 83, 63–70.

    Google Scholar 

  • Verma, R. K.: 1969, ‘Review of Heat Flow Studies in India’, Proc. 2nd Symp. Upp. Mantle Proj., Hyderabad, 147–174.

    Google Scholar 

  • Verma, R. K., Hamza, V. M. and Panda, P. K.: 1970, ‘Further Study of the Correlation of Heat Flow with Age of Basement Rocks’, Tectonophys. 10, 301–319.

    Google Scholar 

  • Vitorello, I. Hamza, V. M. and Pollack, H. N.: 1980, ‘Terrestiral Heat Flow in Brazilian Highlands’, J. Geophys. Res. 85, 3778–3788.

    Google Scholar 

  • Vitorello, I. and Pollack, H. N.: 1980, ‘On the Variation of Continental Heat Flow With Age and the Thermal Evolution of Continents’, J. Geophys. Res. 85, 983–995.

    Google Scholar 

  • Von Herzen, R. P.: 1963, ‘Geothermal Heat Flow in the Gulfs of California and Aden’, Science 140, 1207–1208.

    Google Scholar 

  • Von Herzen, R. P., Detrick, R. S., Crough, S. T., Epp, D. and Fehn, V.: 1982, ‘Thermal Origin of the Hawaiian Swell; Heat Flow Evidence and Thermal Models’, J. Geophys. Res. 87, 6711–6773.

    Google Scholar 

  • Von Herzen, R. P. and Vacquier, V.: 1967, ‘Terrestrial Heat Flow in Lake Malawi, Africa’, J. Geophys. Res. 72, 4221–4226.

    Google Scholar 

  • Wasserburg, G. J. and De Paulo, D. J.: 1979, ‘Models of Earth Structure Inferred from Neodymium and Strontium Isotope Abundances’, Proc. Natl. Acad. Sci, U.S. 76, 3594–3598.

    Google Scholar 

  • Watanabe, T., Langseth, M. G. and Anderson, R. N.: 1977, ‘Heat Flow in Back-Arc Basins of the Western Pacific’, in M. Talwani and W. C. Pitman III (eds.), Island Arcs, Deep Sea Trenches and Back-Arc Basins, Amer. Geophys. Un., Washington, D.C., 137–161.

    Google Scholar 

  • Williams, D. L., Von Herzen, R. P., Sclater, J. G. and Anderson, R. N.: 1974, ‘The Galapagos Spreading Center: Lithosphere Cooling and Hydrothermal Circulation’, Geophys. J. Roy. Astr. Soc. 38, 587–608.

    Google Scholar 

  • Yamano, M., Honda, S. and Uyeda, S.: 1984, ‘Nankai Trough, A Hot Trench?’, J. Marine Geophys. Res., 6, 187–203.

    Google Scholar 

  • Yamano, M., Uyeda, S., Aoki, Y. and Shipley, T. H.: 1982, ‘Estimates of Heat Flow Derived from Gas Hydrates’, Geology 10, 339–343.

    Google Scholar 

  • Yasui, M., Kishii, T. and Sudo, K.: 1967, ‘Terrestrial Heat Flow in the Sea of Okhotsk (1)’, Oceangr. Mag. 19, 87–94.

    Google Scholar 

  • Yasui, M., Kishii, T., Watanabe, T. and Uyeda, S.: 1968, ‘Heat Flow in the Sea of Japan’, in L. Knopoff, C. L. Drake and P. J. Hart (eds.), The Crust and Upper Mantle of the Pacific Area, Geophys. Monogr. 12, Am. Geophys. Un., Washington, D.C., 3–16.

    Google Scholar 

  • Yoshii, T.: 1973, ‘Upper Mantle Structure Beneath the North Pacific and Marginal Seas’, J. Phys. Earth 21, 313–328.

    Google Scholar 

  • Yoshii, T.: 1979, ‘A Detailed Cross-Section of the Deep Scismic Zone Beneath Northeastern Honshu. Japan’, Tectonophys. 55, 349–360.

    Google Scholar 

References

  • Andl, U.: 1982, Geologische, geophysikalische und geochemische Untersuchungen einer aktiven Verwerfung bei Edenkoben (Pfalz), Oberrhein, geol. Abh., 31, Karlsruhe, 19–30.

    Google Scholar 

  • Armstead, H. C. H.: 1983, Geothermal Energy. Its Past, Present and Future Contribution to the Energy Needs of Man, E. & F. N. Spon, 2, edition, New York, London, 404 p.

    Google Scholar 

  • Bodvarsson, G.: 1969, ‘On the Temperature of Water Flowing Through Fractures’. J. Geophys. Res. 74, 1987–1992.

    Google Scholar 

  • Burgassi, D., Ceron, P., Ferrara, G. C, Gestini, G., and Toro, B.: 1970, Geothermal Gradient and Heat Flow in the Radicofani Region (East of Monte Amiata, Italy), Proceed. U.N. Symp. on the Development and Utilization of Geothermal Resources, Geothermics, Spec. Issue 2, Vol 2, Part 7, Pisa, 443–449.

    Google Scholar 

  • Carslaw, H. A. and Jaeger, J. C: 1959, Conduction of Heat in Solids, Clarendon Press, 2. Ed., Oxford, 510 p.

    Google Scholar 

  • Cornelius, C. D.: 1975, ‘Geothermal Aspects of Hydrocarbon Exploration in the North Sea Area’, Norges Geologiske Undersokelse, 316, Bull. 29, 29–68.

    Google Scholar 

  • Edwards, L. M., Chilingar, G. V., Rieke III H. H., and Fertl, W. H. (ed.): 1982, Handbook of Geothermal Energy, Gulf Publ. Comp. Book Div., Houston (USA), 613 p.

    Google Scholar 

  • Fournier, R. O. and Potter, R. W.: 1982, ‘A Revised and Expanded Silica (Quartz) Geothermo-meter’, Geotherm. Res. Cone. Bull. V, 8–9.

    Google Scholar 

  • Fournier, R. O.: 1981, ‘Application of Water Geochemistry to Geothermal Exploration and Reservoir Engineering’, in L. Rybach and L. J. P. Muffler (eds.), Geothermal Systems, J. Wiley & Sons, New York, 109–144.

    Google Scholar 

  • Friedman, J. D., Williams, R. S., Palmason, G., and Müller, C. D.: 1969, Infrared Survey in Iceland, US Geological Survey Professional Paper 650-C, 89–105.

    Google Scholar 

  • Galeone, L. and Mongelli, F.: 1981, ‘Preliminary Geothermal Model of the Travale Field, Italy’, Geothermics 10, 39–44.

    Google Scholar 

  • Galeone, L. and Mongelli, F.: 1982, ‘Outlines for Interpreting Local Heat Flow Anomalies in the Tuscan-Latial pre-Apenninic Belt’, in V. Čermák and R. Haenel (eds.), Geothermics and Geothermal Energy, E. Schweizerbartsche Verlagsbuchhandlung, Nägele n. Obermiller, Stuttgart, 181–190.

    Google Scholar 

  • Giesel, W. and Holz, A.: 1970, ‘Das anomale geothermische Feld in Salzstöcken — Quantitative Deutung an einem Beispiel’, Kali u. Steinsalz 5, 8, 272–274.

    Google Scholar 

  • Grande, N. K. del: 1976, An Advanced Airborne Infrared Method for Evaluating Geothermal Resources, Proceed. 2. UN Symp. on the Development and Use of Geothermal Resources, San Francisco, May 1975, US Government Printing Office, Washington D.C. 29402, U.S.A., 947–953.

    Google Scholar 

  • Günther, R., Kappelmeyer, O., and Kronberg, P.: 1977, Zur Prospektion auf geothermale Anomalien, Erfahrungen einer Modelluntersuchung in Polichnitos, Lesbos (Griechenland), Geol. Rundschau Bd. 66, 10–33.

    Google Scholar 

  • Hardee, H. C. and Larson, D. W.: 1980, ‘Thermal Techniques for Characterizing Magma Body Geometries’, Geothermics 3, 237–250.

    Google Scholar 

  • Jaeger, J. C: 1964, ‘Thermal Effects of Intrusions’, Rev. of Geophysics 2, 3, 443–466.

    Google Scholar 

  • Kappelmeyer, O.: 1957, ‘The Use of Near Surface Temperature Measurements for Discovering Anomalies Due to Causes at Depth’, Geophys. Props. V, 3, 239–258.

    Google Scholar 

  • Kappelmeyer, O. and Haenel, R.: 1974, Geothermics with Special Reference to Application, Geo-explor. Monogr. Ser. 1, No. 4, Gebr. Borntraeger, Berlin, Stuttgart, 238 p.

    Google Scholar 

  • Kestin, J. (ed. in Chief), Di Pippo, R., Khalifa, H. E., and Ryley, D. J. (ed.): 1980, Sourcebook on the Production of Electricity from Geothermal Energy, US Dep. of Energy, Washington, D.C. 20402, Contract, No. EY-76-S-4051. A 002, 997 p.

    Google Scholar 

  • Klemme, H. G.: 1975, ‘Geothermal Gradients, Heat Flow and Hydrocarbon Recovery’, in G. Fischer and S. Judson (eds.), Petroleum and Global Tectonics, 251–304.

    Google Scholar 

  • Lachenbruch, A. H., Sass, J. H., Munroe, R. J., and Moses, T. H. Jr: 1976, ‘Geothermal Setting and Simple Heat Conduction Models for the long Valley Caldera’, J. Geophy. Res. 81, 5, 769–784.

    Google Scholar 

  • Lawton, R. G.: 1974, The AVER Heat Conduction Computer Programm, Report LA-5613-MS, LASL, Los Alamos, USA.

    Google Scholar 

  • Lawton, R. G., Murphy, H. D., Tester, J. W., and McFarland, R. D.: 1976, ‘Geothermal Reservoir Modelling’, in Blair, A. G., Tester, J. W., and Mortensen, J. J. (eds.), LASL, Hot Dry Rock Geothermal Project, progress report LA-6255-PR, LASL, Los Alamos, USA.

    Google Scholar 

  • LeSchack, L. A. and Lewis, J. E.: 1983, ‘Geothermal Prospecting with Shallow Temperature Surveys’, Geophysics 48, 975–996.

    Google Scholar 

  • Lorenz, D.: 1968, Temperature Measurements of Natural Surfaces Using Infrared Radiometers’, Applied Optics 7, 1705–1710.

    Google Scholar 

  • Meinhold, R.: 1968, Der Zusammenhang zwischen Geothermie, Hydrodynamik, Geochemie und Erdöllagerstätten, Erdöl-Erdgas-Erkundung und -Förderung, VEB-Verlag, Leipzig, 1, 422–433.

    Google Scholar 

  • Meinhold, R.: 1971, Hydrodynamic Control of Oil and Gas Accumulation as Indicated by Geothermal, Geochemical and Hydrological Distribution Patterns, Eight world petroleum congress, London, 2, 55–66.

    Google Scholar 

  • Michel, W. and Haenel, R.: 1984, Quantitative Bestimmung von Wasserinjektionen und Extraktionen in Bohrungen mit Hilfe von Temperaturmessungen im Hot-Dry-Rock Projekt Urach, Teilprojekt Geothermik, Report, NLfB Hannover, Archive No. 95 824.

    Google Scholar 

  • Milora, S. L. and Tester, J. W.: 1976, Geothermal Energy as a Source of Electric Power, Thermodynamic and economic design criteria, The MIT Press, London, 186 p.

    Google Scholar 

  • Mongelli, F.: 1980a, ‘Conductive Heat Flow Anomalies Interpretations-Lectures at 3rd Course ‘Geophysics of Geothermal Areas’, Ettore Majorana Tntern. Centre for Scientif Culture’, Erice, Italy.

    Google Scholar 

  • Mongelli, F.: 1980b, ‘Geothermal Prospecting for Geothermal Fields’, in A. Rapolla, G. V. Keller, and D. J. Moore (eds.), Geophysical Aspects of the Energy Problem, Elsevier Sc. P. C, 83–99.

    Google Scholar 

  • Mongelli, F.: 1981, Elementi di Prospezione per l’Energia Geotermica, Adriatica, Editrice, Bari, 150 p.

    Google Scholar 

  • Morse, P. M. and Feshbach, H.: 1953, Methods of Theoretical Physics, McGraw Hill, New York, part I, 997 p.

    Google Scholar 

  • Mundry, E.: 1968, Über die Abkühlung magmatischer Körper, Geol. Jb. 85, Hannover, 755–766.

    Google Scholar 

  • Mundry, E.: 1970, Mathematical Estimation Concerning the Cooling of a Magmatic Intrusion, Proceed. UN Symp. on the Development and Utilization of Geothermal Resources. Geothermics, Spec. Issue 2, Vol. 2, Part I, Pisa, 661–668.

    Google Scholar 

  • Murphy, H. D.: 1977, ‘Fluid Injection Profiles — A Modern Analysis of Wellbore Temperature Surveys’, — Soc. Petrol. Eng. AIME, Spe 6783, 1–8.

    Google Scholar 

  • Murphy, H. D.: 1982, ‘Enhanced Interpretation of Temperature Surveys taken during Injection or Production’, Journal of Petroleum Technology, 1313–1326.

    Google Scholar 

  • Prol, R. M. and Juarez, G.: 1986, ‘Geothermal Map of Mexico’, J. Vole. Geotherm. Res. 28, 351–362.

    Google Scholar 

  • Reeves, R. G., Anson, A., and Landen, D.: 1975, ‘Manual of Remote Sensing’, Am. Soc. of Photogrammetry, Falls Church, V Vol. I (867 p.), Vol. II (2144 p).

    Google Scholar 

  • Reiter, M. and Clarkson, G.: 1983, ‘Geothermal Studies in the San Juan Basin and the Four Corners Area of the Colorado Plateau. II, Steady State Models of the Thermal Source of the San Juan Volcanic Field’, Tectonophysis 91, 253–270.

    Google Scholar 

  • Renner, J. L., White, D. E., and Williams, D. L.: 1975, ‘Hydrothermal Convection Systems’, in D. F. White, and D. L. Williams (eds.), Assessment of Geothermal Resources of the USA, Geol. Survey Circ. 726, 5–57.

    Google Scholar 

  • Rodemann, H.: 1979, Modellrechnungen zum Wärmeaustausch in einem Frac, Report, NLfB Hannover, Archive No. 81 990.

    Google Scholar 

  • Rodemann, H.: 1980, ‘Analytical Model Calculation on Heat Exchange in a Fracture’, in R. Haenel (ed.), The Urach Geothermal Project, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 351–353.

    Google Scholar 

  • Rybach, L. and Muffler, L. J. P. (eds.): 1981, Geothermal Systems — Principles and Case Histories, Wiley & Sons, Ltd., 359 p.

    Google Scholar 

  • Sabins, F. F. Jr.: 1978, Remote Sensing, Principles and Interpretation, W. H. Freeman and Cop., San Francisco, 1–426 p.

    Google Scholar 

  • Selig, F. and Wallick, G. C: 1966, ‘Temperature Distribution in Salt Domes and Surrounding Sediments’, Geophys. 31,346–361.

    Google Scholar 

  • Simmons, F.: 1967, ‘Interpretation of Heat Flow Anomalies, 1, Contrast in Heat Production’, Rev. of Geophys. 5, 42–52.

    Google Scholar 

  • Smith, R. L. and Shaw, H. R.: 1975, ‘Igneous-Related Geothermal Systems’, in D. F. White and D. L. Williams (eds.), Assessment of Geothermal Resources of USA, Geol. Survey, Circ. 726, 58–83.

    Google Scholar 

  • Swanberg, C. A. and Morgan, P.: 1979, ‘The Linear Relation Between Temperatures Based on the Silica Content of Groundwater and Regional Heat Flow: A New Heat Flow Map of the United States’, Pure Appl. Geophys. 117, 227–241.

    Google Scholar 

  • Swanberg, C. A. and Morgan, P.: 1980, ‘The Silica Heat Flow Interpretation Technique: Assumptions and Applications’, J. Geophys. Res. 85, 7206–7214.

    Google Scholar 

  • Swanberg, C. A. and Morgan, P.: 1981, ‘Heat-Flow Map of the United States Based on Silica Geothermometry’, in Y. S. Touloukian, W. R. Judd, and R. F. Roy (eds.), Physical Properties of Rocks and Minerals, McGraw-Hill Book Co., New York, 54–544.

    Google Scholar 

  • Urban, T. C, Diment, W. H., Sass, J. H., and Jamieson, I. M.: 1976, Heat flow at The Geysers, California, USA., Proceed. 2. UN Symp. on the Development and Use of Geothermal Resources, San Francisco, Vol. 2, 1241–1245.

    Google Scholar 

  • Valle, R. G., Friedman, J. D., Gawarchi, S. J., and Banwell, C. J.: 1970, ‘Photogeology and Thermal Infrared Reconnaissance Survey of the Los Megritos — Ixlan de Los Hervores Geothermal Area Michocan, Mexico’, Geothermics, Special Issue No. 2, 381–398.

    Google Scholar 

  • Von Herzen, R. P. and Uyeda, S.: 1963, ‘Heat Flow Through the Eastern Pacific Floor’, J. Geophys. Res. 68, 14, 4234–4240.

    Google Scholar 

References

  • Arnorsson, S.: 1975, ‘Application of the Silica Geothermometer in Low-Temperature Hydrothermal Areas in Iceland’, Am. Jour. Sci. 275, 763–785.

    Google Scholar 

  • Bostick, N. H.: 1973, Time as a Factor in Thermal Metamorphism of Phytoclasts (Coaly Particles)’, 7th Congr. Int. Stratigr. Geol. Carbonif. Krefeld Compt. Rend. 2, 283–293.

    Google Scholar 

  • Bottinga, Y. and Javoy, M.: 1973, ‘Comments on Isotope Geothermometry’, Earth Plan. Sci. Lett. 20, 250–265.

    Google Scholar 

  • Buntebarth, G.: 1979, ‘Eine empirische Methode zur Berechnung von paleo-geothermischen Gradienten’, in Inkohlung und Geothermik, Fortschritte in der Geol. Rheinl. Westfalen. 27, 97–108.

    Google Scholar 

  • Burst, J. F.: 1969, ‘Diagenesis of Gulf Coast, Clayey Sediments and its Possible Relation to Petroleum Migration’, A. A. P. G. Bull. 53, 73–77.

    Google Scholar 

  • Chapman, R. E.: 1973, Petroleum Geology, Elsevier, 304 p.

    Google Scholar 

  • Cummings, J. J. and Robinson W. E.: 1972, Thermal Degradation of Green River Kerogen at 150°C to 350°C, U. S. Bureau of Mines Rep. Invest. No. 7620.

    Google Scholar 

  • Currie, J. B. and Nwachukwu, S. O.: 1974, ‘Evidence of Incipient Fracture Porosity in Reservoir Rocks at Depth’, Bull. Can. Petr. Geol. 22, 42–58.

    Google Scholar 

  • De Braemacker, J. C; 1983, ‘Temperature, Subsidence, and Hydrocarbon Maturation in Extensional Basins: A Finite Element Model’, A. A. P. G. Bull. 67, 1410–1414.

    Google Scholar 

  • Du Rouchet, J.: 1980, ‘The Program DIAGEN, Two Methods for Considering the Chemical Evolution of Organic Matter’, Bull. Centr. Rech. Expl.-Product., Elf-Aquit. 4, 813–831.

    Google Scholar 

  • Eggen, S. S.: 1984; Modelling of Subsidence, Hydrocarbon Generation and Heat Transport in the Norwegian North Sea, IFP/Bernard Doronel.

    Google Scholar 

  • Elders, W. A., Bird, D. K., Williams, A. E. and Schiffman, P.; 1984, ‘Hydrothermal Flow Regime and Magmatic Heat Source of the Cerro Prieto Geothermal System, Baja California, Mexico’, Geothermics 13, 1/2, 27–47.

    Google Scholar 

  • Ellis, A. J. and Mahon, W. A. J., 1977 Chemistry and Geothermal Systems, Acad. Press, New York, 392 p.

    Google Scholar 

  • Falvey, D. A. and Deighton, L.: 1982, ‘Recent Advances in Burial and Thermal Geohistory Analysis’, Journ. Austral. Petr. Expl. Assoc. 22, 65–81.

    Google Scholar 

  • Fournier, R. O. and Rowe, J. J.: 1966, ‘Estimation of Underground Temperatures from the Silica Content of Water from Hot Springs and Wet Steam Wells’, Am. Jour. Sci. 264, 658–697.

    Google Scholar 

  • Fournier, R. O. and Truesdell, A. H.: 1973, ‘An Empirical Na-K-Ca Geothermometer for Natural Waters’, Geoch. Cosmochim. Acta 37, 1255–1275.

    Google Scholar 

  • Giggenbach, W. F. and Lyon, G. L.: 1977, The Chemical and Isotopic Composition of Water and Gas from the Ngawha Geothermal Field, Open File Rep. No. 30/555/7 Chem. Div., Petone.

    Google Scholar 

  • Hacquebard, P. A.: 1977, ‘Rank of Coal as an Index of Organic Metamorphism for Oil and Gas in Alberta’, Geol. Surv. Bull. Canada 262, 11–23.

    Google Scholar 

  • Ho, T. T. Y.: 1978, Manual of Organic Geochemical Interpretation, Conoco, Ponca City, Oklahoma.

    Google Scholar 

  • Hoefs, J.: 1986, Isotope Geothermometers, in G. Buntebarth and L. Stegena (eds.) Palaeogeother-mics, Springer Verlag, 45–52.

    Google Scholar 

  • Hoffmann, C. F.: MacKenzie, A. S., Lewis, C. A., Maxwell, J. R., Oudin, J. L., Durand, B. and Vandenbroucke, M.: 1984, ‘A Biological Marker Study of Coals, Shales and Oils from the Mahakam delta, Kalimantan, Indonesia 1984’, Chem. Geol. 42, 1–23.

    Google Scholar 

  • Hood, A., Gutjahr, C. C. M. and Heacock, R. L.: 1975, ‘Organic Metamorphism and the Generation of Petroleum’, A.A.P.G. Bull. 59, 6, 986–996.

    Google Scholar 

  • Hulston, J. R.: 1976, ‘Isotope Work Applied to Geothermal Systems at the Institute of Nuclear Sciences’, New Zealand, Geothermics 5, 89–96.

    Google Scholar 

  • Jones, P. H.: 1970, ‘Geothermal Resources of the Northern Gulf of Mexico Basin’, UN Symp. Pisa Compt. Rend., Geothermics, Spec. Issue 2, 12–4.

    Google Scholar 

  • Jüntgen, H. and Klein, J.: 1975, ‘Formation of Natural Gas from Coaly Sediments’, Erdöl u. Kohle 28, 65–73.

    Google Scholar 

  • Karweil, J.: 1956, ‘Die Metamorphose der Kohlen vom Standpunkt der physikalischen Chemie’, Z. Deutscher Geol. Ges. 107, 132–139.

    Google Scholar 

  • Kettel, D.: 1981, ‘Maturity Calculations for the Upper Carboniferous of North-West Germany — A Test of Several Methods’, Erdöl Erdgas Ztschr. 97, 395–404.

    Google Scholar 

  • Kharaka, Y. K.: 1980, Geochemistry of Formation Waters from Pleasant Bayou No.2 Well, Proc. 4th Geopressure-geothermal Energy Conf. Austin. Univ. Texas, 168–193.

    Google Scholar 

  • Lasage, A.: 1981, ‘Rate Laws of Chemical Reactions’, in Kinetics of Geochemical Processes, Reviews in Mineralogy 8, 1–68.

    Google Scholar 

  • Leroy, J.: 1979, ‘Contribution a l’etalonage de la pression interne des inclusions fluides lors de leur decrepitation’, Bull. Mineral. 102, 584–593.

    Google Scholar 

  • Lopatin, N. V.: 1971, ‘Temperature and Geologic Time as Factors in Coalification’, Izv. Acad. Sci. USSR, Ser. Geol. 5, 95–100.

    Google Scholar 

  • Lopatin, N. V.: 1976, Determination of the Influence of Temperature and Geologic Times on the Katagenic Processes of Coalification and Oil- and Gas-Formation, Int. Geol. Congr. XXV. Session, Moscow, 361–366.

    Google Scholar 

  • Lopatin, N. V. and Bostick, N. H.: 1973, ‘Geologic Factors in Coalification’, in Priroda Organiches-kogo Veshchestva Sovremennykh i Iskopaemykh Osadkov, Nauka, Moscow, 79–90.

    Google Scholar 

  • MacKenzie, A. S. and McKenzie, D. P.: 1983, Tsomerization and Aromatization of Hydrocarbons in Sedimentary Basins Formed by Extension’, Geol. Mag. 120, 417–528.

    Google Scholar 

  • Magara, K.: 1978, ‘Compaction and Fluid Migration. Practical Petroleum Geology’, Developments in Petroleum Science 9, 319.

    Google Scholar 

  • Mahon, W. A. J.: 1966, ‘Silica in Hot Water Discharged from Drillholes at Wairakei, New Zealand’, N.Z. Jour. Sci. 9, 125–144.

    Google Scholar 

  • Majorowicz, J. A. and Jessop, A. M.: 1981, ‘Present Heat Flow and a Preliminary Palaeogeothermal History of the Central Prairies Basin, Canada’, Geothermics 10, 81–93.

    Google Scholar 

  • McKenzie, D. P.: 1978, ‘Some Remarks on the Development of Sedimentary Basins’, Earth Planet. Sci. Lett. 40, 25–32.

    Google Scholar 

  • McKenzie, D. P.: 1981, ‘The Variation of Temperature with Time and Hydrocarbon Maturation in Sedimentary Basins Formed by Extension’, Earth Planet. Sci. Lett. 55, 87–98.

    Google Scholar 

  • Middleton, M. F. and Falvey, D. A.: 1983, ‘Maturation Modeling in Otway Basin, Australia’, A.A.P.G. Bull. 67, 271–279.

    Google Scholar 

  • Milliken, K. L., Land, L. S. and Loucks, R. G.: 1981, ‘History of Burial Diagenesis Determined from Istopic Geochemistry, Frio Formation, Brazoria County, Texas’, A.A.P.G. Bull. 65, 1397–1413.

    Google Scholar 

  • Paces, T.: 1975, ‘A Systematic Deviation from Na-K-Ca Geothermometer below 75°C and above 104 atm. PCO2’, Geoch. Cosmochim. Acta 39, 541–544.

    Google Scholar 

  • Pagel, M.: 1975, ‘Determination des conditions physico-chimiques de la silification diagenetique des gres Athabasca (Canada) au moyen des inclusions fluides’, C.R. Acad. Sc. Paris 280, D, 2301–2304.

    Google Scholar 

  • Poty, B., Leroux, J. and Jachimowicz, L.: 1976, ‘Un nouvel appareil pour la mesure des temperatures sous le microscope’. Bull. Soc. Francais Mineral. Cristallogr. 99, 182–186.

    Google Scholar 

  • Poty, B. and Pagel, M.: 1984, Fluid Inclusion Techniques to the Study of Thermal Evolution of Sedimentary Basins, Colloque International Phenomenes Thermiques dans les Bassins Sedimentaires, 6–10 Juin 1983, ADERA, Saint-Médard-en-Jalles/France, Paris.

    Google Scholar 

  • Price, L. C: 1982, Time as a Factor in Organic Metamorphism and Use of Vitrinite Reflectance as an Absolute Palaeogeothermometer. A.A.P.G. Bull. 66, 619–620.

    Google Scholar 

  • Pusey, C. W.: 1973, How to Evaluate Potential Gas and Oil Source Rocks, World Oil, April, 71–76.

    Google Scholar 

  • Roedder, E.: 1962, ‘Studies of Fluid Inclusions I’, Econ. Geol. 57, 1045–1061.

    Google Scholar 

  • Roedder, E.: 1963, ‘Studies of Fluid Inclusions II’, Econ. Geol. 58, 167–211.

    Google Scholar 

  • Royden, L. and Keen, C. E.: 1980, ‘Rifting Process and Thermal Evolution of the Continental Margin of Eastern Canada Determined from Subsidence Curves Earth Planet. Sci. Lett. 51, 343–361.

    Google Scholar 

  • Royden, L., Sclater, J. G. and Von Herzen, R. P.: 1980, ‘Continental Margin Subsidence and Heat Flow: Important Parameters in Formation of Petroleum Hydrocarbons’, A.A.P.G. Bull. 64, 2, 173–187.

    Google Scholar 

  • Rybach, L.: 1984, ‘The Palaeogeothermal Conditions of the Swiss Molasse Basin’, Inst. Français Petr. Rev. 39, 2, 143–146.

    Google Scholar 

  • Sajgo, Cs. and Lefler, J.: 1983, ‘A Reaction Kinetic Approach to the Temperature-Time History of Sedimentary Basins’, in G. Buntebarth and L. Stegena (eds.) Palaeogeothermics, Springer Verlag, 119–152.

    Google Scholar 

  • Sanford, S. J. and Elders, W. A.: 1981, Dating Thermal Events at Cerro Prieto Using Fission Track Annealing, Proc. Third Symp. Cerro Prieto Geothermal Field, San Francisco. Lawrence Berkeley Lab. Rep. LBL-11967, 123–133.

    Google Scholar 

  • Savin S. K. and Lee M.: 1984. ‘Estimation of subsurface temperatures from oxigen isotope ratios of minerals’, in print.

    Google Scholar 

  • Sclater, J. G., Royden, L., Horvàth, F., Burchfiel, B. C, Semken, S. and Stegena, L.: 1980, ‘The Formation of the Intra-Carpathian Basins as Determined from Subsidence Data’, Earth Planet. Sci. Lett. 51, 139–162.

    Google Scholar 

  • Siever, A.: 1983, ‘Burial History and Diagenetic Reaction Kinetics’, A.A.P.G. Bull. 67, 4, 684–691.

    Google Scholar 

  • Staplin, F. L.: 1969, ‘Sedimentary Organic Matter, Organic Metamorphism and Oil and Gas Occurrence’, Can. Petr. Geol. Bull. 17, 47–66.

    Google Scholar 

  • Stegena, L., Horvàth, F., Sclater, J. G. and Royden, L.: 1981, ‘Determination of Palaeotemperature by Vitrinite Reflectance Data’, Earth Evol. Sci. 3–4, 292–300.

    Google Scholar 

  • Teichmüller, M.: 1971, ‘Application of Coal-Petrographic Methods in Petroleum and Natural Gas Prospecting’, Erdöl u. Kohle 21, 69–76.

    Google Scholar 

  • Tillman, J. E. and Barnes, H. L.: 1983, ‘Deciphering Fracturing and Fluid Migration Histories in Northern Appalachian Basin’, A.A.P.G. Bull. 67, 692–705.

    Google Scholar 

  • Tissot, B.: 1969, ‘First Data on the Mechanism and Kinetics of the Formation of Petroleum in Sediments’, Inst. Francais Petr. Rev. 24, 470–50.

    Google Scholar 

  • Tissot, B., Deroo G. and Espitalie, J.: 1975, ‘Etude comparée de l’epoque de formation et d’expulsion du petrole dans diverses provinces geologiques’, Ninth World Petr. Congr. Proc. 2, 159–169.

    Google Scholar 

  • Tissot, B. and Espitalie, J.: 1975, L’evolution thermique de la materie organique des sediments: applications d’une simulation mathematique’, Inst. Francais Petr. Rev. 30, 743–777.

    Google Scholar 

  • Tugarinov, A. I. and Naumov, V. B.: 1970, ‘Dependence of the Decrepitation Temperature of Minerals on the Composition of their Gas-liquid Inclusions and Hardness’, Dokl Acad. Sci. USSR 195, 112–114.

    Google Scholar 

  • Urey, H.: 1947, ‘The Thermodynamic Properties of Isotopic Substances J. Chem. Soc., pp. 562–682.

    Google Scholar 

  • Visser, W.: 1982, ‘Maximum Diagenetic Temperature in a Petroleum Source Rock from Venezuela by Fluid Inclusion Thermometry’, Chem. Geol. 37, 95–101.

    Google Scholar 

  • Wagner, G. A., Miller, D. S. and Jäger, E.: 1979, ‘Fission Track Ages on Apatite of Bergell Rocks from Central Alps and Bergell Boulders in Oligocene Sediments’, Earth Plan. Sci. Lett. 45, 355–360.

    Google Scholar 

  • Wang, Jian, Wang Jiyang, Wang Jun, Huang, Geshan, Yan Shuzhen and Lu Xinwen: 1983, ‘Geothermal Studies in Oil Field District of North China’, in G. Buntebarth and L. Stegena (ed.), Palaeogeothermics, Springer Verlag, 195–204.

    Google Scholar 

  • Waples, D. W.: 1980, ‘Time and Temperature in Petroleum Formation: Application of Lopatin’s Method to Petroleum Exploration’, A.A.P.G. Bull. 64, 916–926.

    Google Scholar 

  • Waples, D. W.: 1983, ‘Physical-Chemical Models for Oil Generation’, Colorado School of Mines Quarterly 78, 1–4.

    Google Scholar 

  • Weiss, A. and Roloff, G.: 1965, ‘Über die Rolle glimmerartiger Schichtsilikate bei der Entstehung von Erdöl und Erdöllagerstätten’, M.S. Thesis, Heidelberg.

    Google Scholar 

  • Weite, D. H. and Yukler, M. A.: 1981, ‘Petroleum Origin and Accumulation in Basin Evolution — A Quantitative Model’, A.A.P.G. Bull. 65, 1387–1396.

    Google Scholar 

  • White, D. E.: 1965, ‘Saline Waters of Sedimentary Rocks’, in: Fluids in Subsurface Environments, Symp., Mem. Am. Petr. Geol. 4, 342–366.

    Google Scholar 

References

  • Balobaev, V. T., Devyatkin, V. N., and Kutasov, I. M.: 1978, ‘Contemporary Geothermal Conditions of the Existence and Development of Permafrost, in F. J. Sanger and P. J. Hyde (eds.), Proc. of the Second International Conference on Permafrost-USSR contributions, Washington D.C. (National Academy of Sciences), 8–12.

    Google Scholar 

  • Birch, F. and Clark, H.: 1940, ‘The Thermal Conductivity of Rocks and its Dependence upon Temperature and Composition’, Am. J. Sc., 238, 529–558.

    Google Scholar 

  • Blackwell, D. D., Steele, J. L., and Brott, C. A.: 1980, The Terrain Effect on Terrestrial Heat Flow’, J. Geophys. Res. 85, B9, 4757–4772.

    Google Scholar 

  • Bodvarrson, G.: 1969, ‘On the Temperature of Water Flowing Through Fractures’, J. Geophys. Res. 74, 1987–1992.

    Google Scholar 

  • Bodvarrson, G.: 1972, ‘Thermal Problems in the Siting of Reinjection Wells’, Geothermics 1, 63–66.

    Google Scholar 

  • Bodvarrson, G. and Tsang, C. F.: 1982, ‘Injection and Thermal Breakthrough in Fractured Geothermal Reservoirs’, J. Geophys. Res. 87, B2, 1031–1048.

    Google Scholar 

  • Bodvarrson, G., Benson, S. M. and Witherspoon, P. A.: 1982, ‘Theory of the Development of Geothermal Systems Charged by Vertical Faults’, J. Geophys. Res. 87, B11, 9317–9328.

    Google Scholar 

  • Bredehoeft, J. D. and Papadopulos, I. S.: 1967, ‘Rates of Vertical Groundwater Movement Estimated from the Earth’s Thermal Profile’, Water Resources Research 1, 325–329.

    Google Scholar 

  • Carslaw, H. S. and Jaeger, J. C: 1959, Conduction of Heat in Solids, 2nd Edit., Clarendon, Oxford, 510 p.

    Google Scholar 

  • Delisle, G.: 1980, ‘Berechnungen zur raumzeitlichen Entwicklung des Temperaturfeldes um ein Endlager für mittel- und hochradioaktive Abfalle in einer Salzformation’, Z. dt. geol. Ges., Hannover 131, 461–482.

    Google Scholar 

  • Giesel, W. and Holz, A.: 1970, ‘Das anomale geothermische Feld in Salzstöcken’, Kali und Steinsalz, Essen. 5, 272–274.

    Google Scholar 

  • Gringarten, A. C. and Sauty, J. P.: 1975, ‘A Theoretical Study of Heat Extraction from Aquifers with Uniform Regional Flow’, J. Geophys. Res. 80, B5, 4956–4962.

    Google Scholar 

  • Haenel, R., (ed.): 1980, Atlas of Subsurface Temperatures in the European Community, (Th. Schäfer Druckerei GmbH), Hannover, 36 p and 43 maps.

    Google Scholar 

  • Jensen, P. K.: 1983, ‘Calculation on the Thermal Conditions around a Salt Diapir’, Geophys. Prosp. 31, No. 3.

    Google Scholar 

  • Kappelmeyer, O., and Haenel, R.: 1974, Geothermics with Special Reference to Application, Geo-explor. Monogr. 1, No. 4, (Borntraeger), Berlin, 238 p.

    Google Scholar 

  • Lachenbruch, A. H.: 1970, Some Estimates of the Thermal Effects of a Heated Pipeline in Permafrost, Geological Survey Circular 632, Washington D.C, 23 p.

    Google Scholar 

  • Lachenbruch, A. H.:1982, ‘Permafrost, Heat Flow, and the Geothermal Regime at Prudhoe Bay, Alaska’, J. Geophys. Res. 87, B11, 9301–9316.

    Google Scholar 

  • Lauwerier, H. A.: 1955, ‘The Transport of Heat in an Oil Layer Caused by the Injection of Hot Fluid’, Appl. Sci. Res. Sec. A, 145–150.

    Google Scholar 

  • Maksimov, G., Zanyatin, S., and Konovaloz, S.: 1973, ‘Methods of Cooling Plastically Frozen Ground’, in F. J. Sanger and P. J. Hyde (eds.), Proc. of the Second International Conference on Permafrost — USSR Contributions, Washington D.C. (National Academy of Sciences), 553–560.

    Google Scholar 

  • Moore, E., and Fosberg, M. A.: 1971, ‘Temperatures and Classification of Soils in Latah, Benewah, and Kootenai Counties, Idaho’, Northwest Sci. 45, 137–144.

    Google Scholar 

  • Mundry, E.: 1963, ‘Vorausberechnungen von Wettertemperaturen in trockenen Gruben. Mathematische Behandlung des Problems’, Kali und Steinsalz, Essen, Bd.3, 363–371.

    Google Scholar 

  • Mundry, E.: 1964, ‘Ein Verfahren zur Berechnung der Wettertemperatur in feuchten Gruben’, Kali und Steinsalz, Essen, Bd.2, 37–41.

    Google Scholar 

  • Selig, F., and Wallick, G. C: 1966, ‘Temperature Distribution in Salt and Surrounding Sediments’, Geophys. 31, 346–361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Uyeda, S., Haenel, R., Mongelli, F., Stegena, L., Delisle, G. (1988). Implications. In: Haenel, R., Rybach, L., Stegena, L. (eds) Handbook of Terrestrial Heat-Flow Density Determination. Solid Earth Sciences Library, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2847-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2847-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7780-4

  • Online ISBN: 978-94-009-2847-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics