Skip to main content

Particulate Fouling of Heat Transfer Surfaces: Mechanisms and Models

  • Chapter
Fouling Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 145))

Abstract

In the present context particulate fouling is defined as the accumulation of solid particles suspended in a fluid onto a heat transfer surface. Some of the mechanisms which occur are similar to those which govern the fouling of membranes or filters. Unlike filtration surfaces, however, heat transfer surfaces are more often parallel than perpendicular to the flow. Furthermore, the presence of temperature gradients near a heat transfer surface can perturb the isothermal fouling mechanisms as well as introduce additional particle transport mechanisms, thereby drastically modifying the rate and extent of fouling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Epstein N: Fouling in Heat Exchangers and Fouling: Technical Aspects, in Fouling of Heat Transfer Equipment, Somerscales EFC & Knudsen JG, eds., pp. 701–734, 1981

    Google Scholar 

  2. Epstein N: Fouling in Heat Exchangers and Fouling: Technical Aspects, in Fouling of Heat Transfer Equipment, Somerscales EFC & Knudsen JG, eds.,31–53, Hemisphere, Washington, D.C., 1981.

    Google Scholar 

  3. Papavergos PG and Hedley AB: Particle Deposition Behaviour from Turbulent Flows. Chem. Eng. Res. Des., Vol. 62, pp. 275–295, 1984.

    CAS  Google Scholar 

  4. Gudmundsson JS: Particulate Fouling, in Fouling of Heat Transfer Equipment, Somerscales EFC & Knudsen JG, eds., pp. 357–387, Hemisphere, Washington, D.C., 1981.

    Google Scholar 

  5. Einstein A: The Theory of Brownian Movement. Dover, New York, 1956.

    Google Scholar 

  6. Reichardt H: Fundamentals of Turbulent Heat Transfer, transi, from Arch. Ges. Warraetech. No. 6/7, NACA TM 1408, 1957 and N-41947, 1956.

    Google Scholar 

  7. Metzner AB and Friend WL: Theoretical Analogies between Heat, Mass and Momentum Transfer and Modifications for Fluids of High Prandtl or Schmidt Number. Can. J. Chem. Eng., Vol. 36, pp. 235–240, 1958.

    CAS  Google Scholar 

  8. Cleaver JW and Yates B: A Sublayer Model for the Deposition of Particles from a Turbulent Flow. Chem. Eng. Sci., Vol. 30, pp. 983–992, 1975.

    Article  CAS  Google Scholar 

  9. Blasius H: Das Ahnlichkeitsgesetz bei Reibungsvorgangen in Flüssigkeiten. Forschungsheft 131, Berlin, 1931.

    Google Scholar 

  10. Berger FP and Hau KF: Mass Transfer in Turbulent Pipe Flow Measured by the Electrochemical Method. Int. J. Heat Mass Transf., Vol. 20, No. 11, pp. 1185–1194, 1977.

    Article  CAS  Google Scholar 

  11. Hussain CI, Newson IH and Bott TR: Diffusion Controlled Deposition of Particulate Matter from Flowing Slurries. Proc. 7th Intern. Heat Transf. Conf., Vol. 5, pp. 2573–2579, Hemisphere, 1986.

    Google Scholar 

  12. Friedlander SK and Johnstone HF: Deposition of Suspended Particles from Turbulent Gas Streams. Ind. Eng. Chem., Vol. 49, pp. 1151–1156, 1957.

    Article  CAS  Google Scholar 

  13. Hutchinson PC, Hewitt GF and Dukler AE: Deposition of Liquid or Solid Dispersions from Turbulent Gas Streams: A Stochastic Model. Chem. Eng. Sci., Vol. 26, pp. 419–439, 1971.

    Article  CAS  Google Scholar 

  14. Shimada M, Okuyama K, Kousaka Y and Ohshima K: Turbulent and Brownian Diffusive Deposition of Aerosol Particles onto a Rough Wall. J. Chem. Eng. Japan, Vol. 20, pp. 57–64, 1987.

    Article  CAS  Google Scholar 

  15. El-Shobokshy MS and Ismail IA: Deposition of Aerosol Particles from Turbulent Flow onto Rough Pipe Wall. Atmos. Environ., Vol. 14, No. 3, pp. 297–304, 1980.

    Article  Google Scholar 

  16. Davies JT: A New Theory of the Deposition of Colloidal Particles from Turbulent Fluids. Annals of the New York Academy of Sciences, Vol. 404, pp. 313–326, 1983.

    Article  CAS  Google Scholar 

  17. Davies JT: A New Theory of Aerosol Deposition from Turbulent Fluids. Chem. Eng. Sci., Vol. 38, pp. 135–139, 1983.

    Article  CAS  Google Scholar 

  18. Owen I, El-Kady A and Cleaver JW: Fine Particle Fouling of Roughened Heat Transfer Surfaces. Proc. 2nd ASME-JSME Thermal Engineering Joint Conference, Hawaii, pp. 95–101, 1987.

    Google Scholar 

  19. Rouhiainen PO and Stachiewicz JW: On the Deposition of Small Particles from Turbulent Streams. Trans. ASME J. Heat Transfer, Vol. 92, pp. 169–177, 1970.

    Article  Google Scholar 

  20. Lister DH: Corrosion Products in Power Generating Systems, in Fouling of Heat Transfer Equipment, Somerscales EFC & Knudsen JG, eds., pp. 135–200, Hemisphere, Washington, D.C., 1981.

    Google Scholar 

  21. Beal SK: Particulate Fouling of Heat Exchangers, in Fouling of Heat Exchanger Surfaces, Bryers RW, ed., pp. 215–234, Engineering Foundation, New York, 1983.

    Google Scholar 

  22. Lee SL: Recent Development of Particle Deposition in a Turbulent Suspension Flow, in Gas-Solid Flows, Jurewicz, ed., pp. 3–7, Energy Sources Technology Conference, New Orleans, ASME, 1984.

    Google Scholar 

  23. Saffman PG: The Lift on a Small Sphere in a Slow Shear Flow. J. Fluid Mech., Vol. 22, pp. 385–403, 1965.

    Article  Google Scholar 

  24. Brenner H: The Slow Motion of a Sphere Through a Viscous Fluid Towards a Plane Surface. Chem. Eng. Sci., Vol. 16, pp. 242–251, 1961.

    Article  CAS  Google Scholar 

  25. Whitmore PJ and Meisen A: Estimation of Thermo- and Diffusiophoretic Particle Deposition. Can. J. Chem. Eng., Vol. 55, pp. 279–285, 1977.

    Article  CAS  Google Scholar 

  26. El-Shobokshy MS: A Method for Reducing the Deposition of Small Particles from Turbulent Fluid by Creating a Thermal Gradient at the Surface. Can. J. Chem. Eng., Vol. 59, pp. 155–157, 1981.

    Article  Google Scholar 

  27. Muller-Steinhagen H, Reif F, Epstein N and Watkinson AP: Particulate Fouling During Boiling and Non-Boiling Heat Transfer. Proc. 7th Intern. Heat Transf. Conf., Vol. 5, pp. 2555–2560, Hemisphere, 1986.

    Google Scholar 

  28. Muller-Steinhagen H, Reif F, Epstein N and Watkinson AP: Influence of Operating Conditions on Particulate Fouling. Can. J. Chem. Eng., in press, 1987.

    Google Scholar 

  29. Watkinson AP and Epstein N: Particulate Fouling of Sensible Heat Exchangers. Proc. 4th Intern. Heat Transf. Conf., Vol. 1, Paper HE 1.6, Elsevier, 1971.

    Google Scholar 

  30. Parkins WE: Surface Film Formation in Reactor Systems. Proc. Tripartite Conf. on Transport of Materials in Pressurized-Water Systems, Report AECL-1265, Paper 9, Atomic Energy of Canada Ltd., 1961.

    Google Scholar 

  31. Beal SK: Deposition of Particles in Turbulent Flow on Channel or Pipe Walls. Nucl. Sci. & Engg., Vol. 40, pp. 1–11, 1970.

    Google Scholar 

  32. Bryers RW, ed.: Ash Deposits and Corrosion Due to Impurities in Combusion Gases, Hemisphere, Washington, D.C., 1978.

    Google Scholar 

  33. Rosner, DE and Nagarajan R: Self-Regulated Sticking of Impacting Particles: Theory of Deposit Growth from Ash-Laden Flowing Combustion Gases in the Presence of Vapor- or Submicron Mist ‘Glue1’. Private Communication from High Temperature Chemical Reaction Engineering Laboratory, Yale Univ., New Haven, CT, U.S.A.

    Google Scholar 

  34. Visser J: Colloid and Other Forces in Particle Adhesion and Particle Removal. Symp. on Deposition and Filtration of Particles from Liquids and Gases, Soc. Chem. Ind., Loughborough, 1978.

    Google Scholar 

  35. Rodliffe RS and Means FA: Factors Governing Particulate Corrosion Product Adhesion to Surfaces in Water Reactor Coolant Circuits. CEGB Rept. RD/B/N4525, Berkeley Nuclear Laboratories, U.K., 1979.

    Google Scholar 

  36. Williamson R, Newson I and Bott TR: The Deposition of Haematite Particles from Flowing Water. Symp. on Fouling of Heat Exchangers, Paper 5d, 36th Can. Chem. Eng. Conf., Sarnia, ON, Canada, October 1986.

    Google Scholar 

  37. Matijevic E and Kallay N: Kinetics of Deposition of Colloidal Metal Oxide Particles on a Steel Surface. Croatica Chemica Acta, Vol. 56, pp. 649–661, 1983.

    CAS  Google Scholar 

  38. Ruckenstein E and Prieve DC: Rate of Deposition of Brownian Particle Under the Action of London and Double-Layer Forces. J. Chem. Soc. Faraday II, Vol. 69, pp. 1522–1536, 1973.

    Article  CAS  Google Scholar 

  39. Bowen BD and Epstein N: Fine Particle Deposition in Smooth Parallel-Plate Channels. J. Colloid Interface Sci., Vol. 72, pp. 81–97, 1979.

    Article  CAS  Google Scholar 

  40. Watkinson AP and Epstein N: Gas Oil Fouling in a Sensible Heat Exchanger. Chem. Eng. Prog. Symp. Series, Vol. 65, No. 92, pp. 84–90 1969.

    CAS  Google Scholar 

  41. Kern DQ and Seaton RE: A Theoretical Analysis of Thermal Surface Fouling. Brit. Chem. Eng., Vol. 4, No. 5, pp. 258–262, 1969.

    Google Scholar 

  42. Taborek J, Aoki T, Ritter RB, Palen JW and Knudsen JG: Fouling — The Major Unresolved Problem in Heat Transfer. Chem. Eng. Prog., Vol. 68 No. 2, pp. 59–67, 1972

    CAS  Google Scholar 

  43. Taborek J, Aoki T, Ritter RB, Palen JW and Knudsen JG: Fouling — The Major Unresolved Problem in Heat Transfer. Chem. Eng. Prog., Vol. 68 No. 7, pp. 69–78, 1972.

    CAS  Google Scholar 

  44. Cleaver JW and Yates B: The Effect of Re-entrainment on Particle Deposition. Chem. Eng. Sci., Vol. 31, pp. 147–151, 1976.

    Article  CAS  Google Scholar 

  45. Epstein N: General Thermal Fouling Models. NATO ASI on Advances in Fouling Science and Technology, Alvor, Portugal, May 1987.

    Google Scholar 

  46. Hopkins RM and Epstein N: Fouling of Stainless Steel Tubes by a Flowing Suspension of Ferric Oxide in Water. Proc. 5th Intern. Heat Transf. Conf., Vol. 5, pp. 180–184, Tokyo, 1974.

    Google Scholar 

  47. Thomas D: Experimental Investigation of the Deposition of Suspended Magnetite from the Fluid Flow in Steam Generating Boiler Tubes. Ph.D Thesis, Technical University of Munich, 1973.

    Google Scholar 

  48. Burrill KA: The Deposition of Magnetite Particles from High Velocity Water on to Isothermal Tubes. AECL Report No. 5308, 1977.

    Google Scholar 

  49. Newson IH, Bott TR and Hussain CI: Studies of Magnetite Deposition from a Flowing Suspension. Chem. Eng. Communie, Vol. 20,

    Google Scholar 

  50. pp. 335–353, 1983.

    Google Scholar 

  51. Charlesworth DH: The Deposition of Corrosion Products in Boiling Water Systems. Chem. Eng. Prog. Symp. Series, Vol. 66, No. 104, pp. 21–30, 1970.

    CAS  Google Scholar 

  52. Macbeth RV: Fouling in Boiling Water Systems. Chapter 15 of Two-Phase Flow and Heat Transfer, Butterworth D & Hewitt GF, eds., Oxford Univ. Press, 1977.

    Google Scholar 

  53. Gasparini R, Delia Rocca C and Ioannilli E: A New Approach to the Study and Prevention of Deposits in Modern Power Stations. Combustion, Vol. 41, No. 5, pp. 12–18, 1969

    CAS  Google Scholar 

  54. Gasparini R, Delia Rocca C and Ioannilli E: Mechanism of Protective Film Formation on Cu-Alloy Condenser Tubes with FeSO4 Treatment. Corrosion Sci., Vol. 10, pp. 157–163, 1970.

    Article  CAS  Google Scholar 

  55. Prieve DC and Ruckenstein E: Effect of London Forces upon the Rate o Deposition of Brownian Particles. AIChE J., Vol. 20, pp. 1178–1187, 1974.

    Article  CAS  Google Scholar 

  56. Hasson D, Marmur A and Tor Y: Fouling of a Cylindrical Obstacle Placed in an Air Stream. Proc. 6th Intern. Heat Transf. Conf., Vol. 6, pp. 301–306, Hemisphere, 1982.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Epstein, N. (1988). Particulate Fouling of Heat Transfer Surfaces: Mechanisms and Models. In: Melo, L.F., Bott, T.R., Bernardo, C.A. (eds) Fouling Science and Technology. NATO ASI Series, vol 145. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2813-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2813-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7766-8

  • Online ISBN: 978-94-009-2813-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics