Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 293))

Abstract

Monte Carlo simulation techniques are discussed, with special emphasis on those technical aspects that are important for the simulation of dense liquids and solids. In these notes, the Metropolis sampling scheme is introduced as a special case of importance sampling. The choice of the optimum trial move is discussed, as are the problems encountered when sampling orientational and internal degrees of freedom. After introducing the MC method as a technique to measure averages in the canonical ensemble, we briefly look at simulations in other ensembles, in particular: microcanonical, isobaric-isothermal and grand-canonical. The latter ensemble forms the starting point for a discussion of particle insertion techniques to measure the chemical potential and more general acceptance-ratio and overlapping distribution schemes. We thereupon discuss the application of computer simulation techniques to the study of phase transitions. Although the emphasis is on first-order transitions, a few remarks are made about the technical problems posed by continuous phase transitions. We end with a discussion of the relative merits of Monte Carlo and Molecular Dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. P. Feynman, Statistical Mechanics, Benjamin, Reading (Mass.), 1972.

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd edition, Pergamon Press, London, 1980.

    Google Scholar 

  3. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J.Chem. Phys. 21:1087 (1953).

    Article  ADS  Google Scholar 

  4. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, 1987.

    MATH  Google Scholar 

  5. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, Cambridge U.P., Cambridge, 1986.

    Google Scholar 

  6. Although almost all published MC simulations on atomic and molecular systems generate trial displacements in a cube centered around the original center-of-mass position, this is by no means the only possibility. Sometimes it is more convenient to generate trial moves in a spherical volume, and it is not even necessary that the distribution of trial moves in such a volume is uniform, as long as it has inversion symmetry. For an example of a case where another sampling scheme is preferable, see: W. G. T. Kranendonk and D. Frenkel, Mol. Phys. 64:403 (1988).

    Article  ADS  Google Scholar 

  7. The situation is of course different for trial moves that affect not all particles, but only a non-interacting subset. In that case the acceptance or rejection can be decided for each particle individually. Such a procedure is in fact very suited for Monte Carlo simulations on both vector and parallel computers.

    Google Scholar 

  8. F. J. Vesely, J. Comp. Phys. 47:291 (1982).

    Article  ADS  MATH  Google Scholar 

  9. M. Fixman, Proc. Nat. Acad. Sci. 71:3050 (1974).

    Article  ADS  Google Scholar 

  10. G. Ciccotti and J. P. Ryckaert, Comp. Phys. Reports 4:345 (1986).

    ADS  Google Scholar 

  11. Unfortunately, the referees of this paper thought otherwise: A. Cassandro, G. Ciccotti, V. Rosato and J. P. Ryckaert, unpublished.

    Google Scholar 

  12. M. Creutz, Phys. Rev. Lett. 50:1411 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  13. W. W. Wood, J. Chem. Phys. 48:415 (1968).

    Article  ADS  Google Scholar 

  14. I. R. McDonald, Mol. Phys. 23:41 (1972).

    Article  ADS  Google Scholar 

  15. Actually, there is no need to assume a real piston. The systems with volume V and V 0 — V may both be isolated systems subject to their individual (periodic) boundary conditions. The only constraint that we impose is that the sum of the volumes of the two systems equals V 0.

    Google Scholar 

  16. R. Eppenga and D. Frenkel, Mol. Phys. 52:1303 (1984).

    Article  ADS  Google Scholar 

  17. M. Parrinello and A. Rahman, Phys. Rev. Lett. 45:1196 (1980).

    Article  ADS  Google Scholar 

  18. M. Parrinello and A. Rahman, J. Appl. Phys. 52:7182 (1981).

    Article  ADS  Google Scholar 

  19. H. C. Andersen, J. Chem. Phys. 72:2384 (1980)

    Article  ADS  Google Scholar 

  20. R. Najafabadi and S. Yip, Scripta Metall. 17:1199 (1983).

    Article  Google Scholar 

  21. Except that one should never use the constant stress method for uniform fluids, because the latter offer no resistance to the deformation of the unit box, and very strange (flat, elongated etc.) box-shapes may result. This may have serious consequences because simulations on systems that have shrunk considerably in any one dimension tend to exhibit appreciable finite-size effects.

    Google Scholar 

  22. D. C. Wallace, in: Solid State Physics, H. Ehrenreich, F. Seitz and D. Turnbull, eds., Academic Press, New York, (1970), Volume 25, p 301.

    Google Scholar 

  23. J. R. Ray and A. Rahman, J. Chem. Phys. 80:4423 (1984).

    Article  ADS  Google Scholar 

  24. G. E. Norman and V. S. Filinov, High Temp. Res. USSR 7:216 (1969).

    Google Scholar 

  25. D. J. Adams, Mol. Phys. 28:1241 (1974).

    Article  ADS  Google Scholar 

  26. D. J. Adams, Mol. Phys. 29:307 (1975).

    Article  ADS  Google Scholar 

  27. D. J. Adams, Mol. Phys. 32:647 (1976).

    Article  ADS  Google Scholar 

  28. D. J. Adams, Mol. Phys. 37:211 (1979).

    Article  ADS  Google Scholar 

  29. L. A. Rowley, D. Nicholson and N. G. Parsonage, J. Comp. Phys. 17:401 (1975).

    Article  ADS  Google Scholar 

  30. J. Yao, R. A. Greenkorn and K. C. Chao, Mol. Phys. 46:587 (1982).

    Article  ADS  Google Scholar 

  31. M. Mezei, Mol. Phys. 40:901 (1980).

    Article  ADS  Google Scholar 

  32. J. P. Valleau and K. L. Cohen, J. Chem. Phys. 72:3935 (1980).

    Google Scholar 

  33. W. van Meegen and I. Snook, J. Chem. Phys. 73:4656 (1980).

    Article  ADS  Google Scholar 

  34. D. Frenkel in: Molecular Dynamics Simulations of Statistical Mechanical Systems, Proceedings of the 97th International School of Physics ‘Enrico Fermi’, G. Ciccotti and W. G. Hoover, editors. North-Holland, Amsterdam, 1985, p.151.

    Google Scholar 

  35. A. Z. Panagiotopoulos, Mol. Phys. 61:813 (1987).

    Article  ADS  Google Scholar 

  36. A. Z. Panagiotopoulos, N. Quirke, M. Stapleton and D. J. Tildesley, Mol. Phys. 63:527 (1988).

    Article  ADS  Google Scholar 

  37. A. Z. Panagiotopoulos, Mol. Phys. 62:701 (1987).

    Article  ADS  Google Scholar 

  38. B. Widom, J. Chem. Phys. 39:2808 (1963).

    Article  ADS  Google Scholar 

  39. K.S. Shing and S. T. Chung, J. Phys. Chem. 91:1674 (1987).

    Article  Google Scholar 

  40. P. Sindzingre, G. Ciccotti, C. Massobrio and D. Frenkel, Chem. Phys. Lett. 136:35 (1987).

    Article  ADS  Google Scholar 

  41. J. L. Lebowitz, J. K. Percus and L. Verlet, Phys. Rev. 153:250 (1967).

    Article  ADS  Google Scholar 

  42. P. Sindzingre, C. Massobrio, G. Ciccotti and D. Frenkel, Chemical Physics (to appear).

    Google Scholar 

  43. K. S. Shing and K. E. Gubbins, Mol. Phys. 46, 1109 (1982).

    Article  ADS  Google Scholar 

  44. K. S. Shing and K. E. Gubbins, Mol. Phys. 49, 1121 (1983).

    Article  ADS  Google Scholar 

  45. C. H. Bennett, J. Comput. Phys. 22, 245 (1976).

    Article  ADS  Google Scholar 

  46. O. G. Mouritsen, Computer Studies of Phase Transitions and Critical Phenomena, Springer, Berlin, 1984.

    Google Scholar 

  47. K. Binder, Applications of the Monte Carlo Method in Statistical Physics, Springer, Berlin, 1984.

    MATH  Google Scholar 

  48. W. G. Hoover and F. H. Ree, J. Chem. Phys. 47:4873 (1967).

    Article  ADS  Google Scholar 

  49. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd edition, Academic Press, London, 1986.

    Google Scholar 

  50. D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81:3188 (1984).

    Article  ADS  Google Scholar 

  51. D. Frenkel and B. M. Mulder, Mol. Phys. 55:1171 (1985).

    Article  ADS  Google Scholar 

  52. A. Stroobants, H. N. W. Lekkerkerker and D. Frenkel, Phys. Rev. A36:2929 (1987).

    ADS  Google Scholar 

  53. D. Frenkel, H. N. W. Lekkerkerker and A. Stroobants, Nature 332:822 (1988).

    Article  ADS  Google Scholar 

  54. R. Zwanzig and N. K. Ailawadi, Phys. Rev. 182:280 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  55. G. Jacucci and A. Rahman, Nuovo Cimento D4:341 (1984).

    Article  ADS  Google Scholar 

  56. D. Frenkel and R. Eppenga, Phys. Rev. A31:1776 (1985).

    ADS  Google Scholar 

  57. P. J. Rossky, J. D. Doll and H. L. Friedman, J. Chem. Phys. 69:4628 (1978).

    Article  ADS  Google Scholar 

  58. S. E. Koonin, Computational Physics, Benjamin/Cummings, Menlo Park, 1986.

    Google Scholar 

  59. J. P. Valleau and S. G. Whittington, in Statistical Mechanics, part A, B. J. Berne (editor), Plenum, New York (1977), p. 137

    Google Scholar 

  60. J. P. Valleau and G. M. Torrie, ibidem in Statistical Mechanics, part A, B. J. Berne (editor), Plenum, New York (1977), p 169.

    Google Scholar 

  61. D. W. Heermann, Computer Simulation Methods in Theoretical Physics, Springer, Berlin, 1986.

    Google Scholar 

  62. G. Ciccotti, D. Frenkel and I. R. McDonald, Simulation of Liquids and Solids, North-Holland, Amsterdam, 1987. This reprint collection contains, among others, references [3,14,18,19,32,41,45,48,50,54]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Frenkel, D. (1990). Monte Carlo Simulations. In: Catlow, C.R.A., Parker, S.C., Allen, M.P. (eds) Computer Modelling of Fluids Polymers and Solids. NATO ASI Series, vol 293. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2484-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2484-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7621-0

  • Online ISBN: 978-94-009-2484-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics