Skip to main content

The Oxygen Isotope Composition of Lower Crustal Granulite Xenoliths

  • Chapter
Granulites and Crustal Evolution

Part of the book series: NATO ASI Series ((ASIC,volume 311))

Abstract

Stable isotope information, though potentially helpful in identification of protolith material and investigation of superimposed fluid-rock interactions, are sparsely represented in the granulite literature. Here we report 86 new whole-rock 18O/16O analyses of granulite xenoliths from alkali basalt localities in North America, Europe, Australia and Asia. The data for 71 samples of igneous origin form a well-defined population with an unexpectedly high average value of +7.5 ± 1.4‰. For some granulite xenolith suites, correlations between oxygen and radiogenic isotope systems are strong, whereas for others no covariation is observed. Overall, even radiogenically primitive samples lack δ18O values appropriate to mantle-derived magmas, which are the suspected progenitors of the mafic granulites studied. We therefore suggest that the O-isotope composition of the lower crust has been modified, through the introduction of surficially-dervived 18O, on a scale not previously recognised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bohlen, S.R. and Mezger, K. 1989. Origin of granulite terranes and the formation of lowermost continental crust: Science. 244, 326–329.

    Article  Google Scholar 

  • Cerling, T.E., Brown, F.H. and Bowman, J.R. 1985. Low temperature alteration of volcanic glass: Hydration, Na, K, 18O and Ar mobility. Chem. Geol. (Isotope Geoscience), 52, 281–293.

    Google Scholar 

  • Clayton, R.N. and Mayeda, T.K. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta, 27, 43–52.

    Article  Google Scholar 

  • Collerson, K.D., Hearn, B.C., MacDonald, R.A., Upton, B.F. and Park, J.G. 1988. Granulite xenoliths from the Bearpaw Mountains, Montana: Constraints on the character and evolution of lower continental crust. Terra Cognita, 8, 273.

    Google Scholar 

  • Craig, H. 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 133, 1833–1834.

    Article  Google Scholar 

  • Dodge, F.C.W., Calk, L.C. and Kistier, R.W. 1986. Lower crustal xenoliths, Chinese Peak lava flow, central Sierra Nevada. J. Petrol, 27, 1277–1304.

    Google Scholar 

  • Downes, H., Dupuy, C and Leyreloup, A.F. 1989. Crustal evolution of the Hercynian belt of Western Europe: evidence from lower crustal granulite xenoliths (French Massif Central). Submitted to Chem. Geol.

    Google Scholar 

  • Fuchs, K., von Gehlen, K., Malzer, H., Murawksi, H. and Semmel, A (eds.). 1983. Plateau uplift, the Rhenish shield — a case history. Springer-Verlag, Berlin, 411pp.

    Google Scholar 

  • Gregory, R.T. and Taylor, H.P. 1981, an oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence for δ18O-buffering of the oceans by deep (>5km) seawater-hydro-thermal circulation at mid-ocean ridges. J. Geophys. Res. 86, 2737–2755.

    Google Scholar 

  • Harmon, R.S., Kempton, P.D., Stosch, H-G., Hoefs, J., Kovalenko, V.I. and Eonov, D. 1986. 18O/16O ratios in anhydrous spinel lherzolite xenoliths from the Shavaryn-Tsaram volcano, Mongolia. Earth Planet. Sci. Lett. 81, 193–202.

    Article  Google Scholar 

  • Hildreth, W. and Moorbath, S. 1988, Crustal contributions to arc magmatism in the Andes of central Chile: Contrib. Mineral. Petrol. 98, 455–489.

    Article  Google Scholar 

  • James, D.E., Padovani, E.R. and Hart, S.R. 1980. Preliminary results on the oxygen isotopic composition of the lower crust, Kilboume Hole maar. New Mexico. Geophys. Res. Lett., 7, 321–324.

    Article  Google Scholar 

  • Kempton, P.D., Harmon, R.S., Stosch, H-G, Hoefs, J. and Hawkesworth, C.J. 1988. Open system O-isotope behaviour and trace element enrichment in the sub-Eifel mantle. Earth Planet. Sci. Lett., 89, 273–287.

    Article  Google Scholar 

  • Kempton, P.D., Harmon, R.S., Hawkesworth, C.J. and Moorbath, S. 1989. Petrology and geochemistry of lower crustal granulites from the Geronimo Volcanic Field, southeastern Arizona. Submitted to Geochim. Cosmochim. Acta.

    Google Scholar 

  • Mengel, K. 1989. Crustal xenoliths from Tertiary volcanics of the Northern Hessian Depression, petrological and chemical evolution. Submitted to Contrib. Mineral. Petrol.

    Google Scholar 

  • O’Neil, J.R., Shaw, S.E., and Flood, R.H. 1977, Oxygen and hydrogen isotope compositions as indicators of granite genesis in the New England batholith, Australia. Contrib. Mineral Petrol. 62, 313–328.

    Article  Google Scholar 

  • Rudnick, R.L. 1989. Nd and Sr isotopic composition of lower crustal xenoliths from North Queensland, Australia: implications for Nd model ages and crustal growth processes. Submitted to Chem. Geol.

    Google Scholar 

  • Rudnick, R.L. and Taylor, S.R. 1987. The composition and petrogenesis of the lower crust: a xenolith study. J. Geophys. Res., 92, 13981–14005.

    Article  Google Scholar 

  • Rudnick, R.L and Taylor, S.R. 1989. Petrology and geochemistry of lower crustal xenoliths from northern Queensland and inferences on lower crustal composition. In: The Eastern Australian Lithosphere. Geol. Soc. Australia Spec. Pub.

    Google Scholar 

  • Rudnick, R.L., McDonough, W.F., McCulloch, M.T. and Taylor, S.R. 1986. Lower crustal xenoliths from Queensland, Australia: Evidence for deep crustal assimilation and fractionation of continental basalts. Geochim. Cosmochim. Acta, 50, 1099–1115.

    Article  Google Scholar 

  • Shieh, Y.N. and Schwarz, H.P. 1974. Oxygen isotope studies of granite and migmatite, Grenville province of Ontario, Canada. Geochim. Cosmochim. Acta, 38, 21–45.

    Article  Google Scholar 

  • Stosch, H-G., Lugmair, G.W. and Seek, H.A. 1986. Geochemistry of granulite-facies lower crustal xenoliths: implications for the geological history of the lower continental crust below the Eifel, West Germany. In: Geol. Soc. Spec. Pub. 24, 309–317.

    Google Scholar 

  • Taylor, H.P. Jr., 1986, Igneous rocks: II. Isotopic case studies of circum-Pacific magmatism. In: Stable Isotopes In High Temperature Geological Processes (J.W. Valley, H.P. Taylor, and J.R. O’Neil, eds.), 273–315.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M. 1985. The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, 312pp.

    Google Scholar 

  • Valley, J.W. and O’Neil, J.R. 1984. Fluid heterogeneity during granulite facies metamorphism in the Adirondacks: stable isotope evidence. Contrib. Mineral. Petrol., 85, 158–173.

    Article  Google Scholar 

  • Wickham S.M. and Taylor, H.P. 1987. Stable isotope constraints on the origin and depth of penetration of hydrothermal fluids associated with Hercynian regional metamorphism and crustal anatexis in the Pyrenees. Contrib. Mineral. Petrol., 95, 255–268.

    Article  Google Scholar 

  • Wilshire, H.G., Meyer, C.E., Nakata, J.K., Calk, L.C., Shervais, J.W. and Schwarzman, E.C. 1988. Mafic and ultramafic xenoliths from volcanic rocks of the western United States. U.S. Geol. Survey Prof. Paper 1443, 179pp.

    Google Scholar 

  • Wilson, A.F. and Baksi, A.K. 1983. Widespread 18O depletion in some Frecambrian granulites of Australia. Precambrian Res., 23, 33–56.

    Article  Google Scholar 

  • Wilson, A.F. and Baksi, A.K. 1984. Oxygen isotope fractionation and disequilibrium displayed by some granulite facies rocks from the Fraser Range, Western Australia. Geochim. Cosmochim. Acta, 48, 423–432.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fowler, M.B., Harmon, R.S. (1990). The Oxygen Isotope Composition of Lower Crustal Granulite Xenoliths. In: Vielzeuf, D., Vidal, P. (eds) Granulites and Crustal Evolution. NATO ASI Series, vol 311. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2055-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2055-2_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7422-3

  • Online ISBN: 978-94-009-2055-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics