Skip to main content

The Granulites of the Jequié Complex and Atlantic Coast Mobile Belt, Southern Bahia, Brazil — An Expression of Archean/Early Proterozoic Plate Convergence

  • Chapter
Granulites and Crustal Evolution

Part of the book series: NATO ASI Series ((ASIC,volume 311))

Abstract

The granulite belt of the eastern atlantic coast of Brazil constitutes one of the largest outcropping granulite complexes in the world. The studied region, with an extension of about 22300 km2, is found in this belt, in the southern part of the Bahia State. In the northwestern part of this region occur cogenetic, enderbitic-charnockitic plutonics, which were intruded by gabbros-norites-anorthosites and which were all re-equilibrated in granulite facies. In the same region the supercrustals are volcano-sedimentary rocks constituted by intercalated bands of felsic granulites and mafic granulites, the latter having a chemical composition similar to that of basalts or gabbros from ocean-floor or back-arc basins. Garnetiferous quartzites, kinzigites and banded iron formations are also present in this supracrustal sequence (unmigmatized zones). These supracrustal rocks are occasionally migmatized in granulite facies (migmatized zone). In the central part occur essentially intercalated amphibolites and felsic gneisses, with similar chemical characteristics as those of the northwestern part, but metamorphosed in high grade amphibolite facies. Migmatites are also found in this part. The rocks of the southeastern part of the region are metamorphosed in the granulite facies and are composed of volcanic and plutonic lithologies with a composition similar to modern island arcs, including shoshonitic rocks, fully developed calc-alkaline series, incomplete tholeiitic series and basalts rich in Fe-Ti, with K content increasing towards the northwest.

The spacial arrangement and the characteristics of the protoliths of these lithologies metamorphosed in high grade strongly suggest a west-dipping subduction zone below the southeastern part and a collision zone in the central part of the region, where there is a greater dominance of mafic rocks in the granulite and amphibolite facies with a chemistry similar to that of basalts and/or gabbros from ocean-floor or back-arc basins. Mineral chemical data indicate that the main granulitic metamorphism was of the high-temperature, intermediate-pressure type (HT-IP), with peak metamorphic temperatures estimated at 850°C and pressures around 5–7 Kb. The metamorphic climax with age of aproximately 2.0 Ga was reached after major ductile deformations ceased. Retrograde metamorphism is identifiable in the region, specially where ultramylonites occur. In these zones the granulites were re-equilibrated to amphibolite or greenschist facies. Comparison of similar mafic lithotypes in amphibolite and granulite facies rocks within a transition zone suggests that the amphibolite-granulite prograde reactions were isochemical. Nevertheless, comparisons between lithologies of the unmigmatized and migmatized zones show that K, Rb and Sr were mobilized during granulitic migmatization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • de Almeida, F.F.M. 1967. Origem e evolução da Plataforma Brasileira. DNPM/DGM, no 241.

    Google Scholar 

  • Almeida, F.F.M. de 1977. O Craton do São Francisco. Rev. Bras. Geoc. 7(4): 349–364.

    Google Scholar 

  • Aramaki, S. 1963. Geology of Asama Volcano. J. Fac. Sci. Uni. Tokio, Sec. 2, v. 14: 229–443.

    Google Scholar 

  • Barbosa, J.S.F. and Fonteilles, M. 1986. Examen critique des résultats fournis par certains baromètres couramment utilisés en terrains granulitiques. Exemples des granulites de Bahia (Brésil) et du Massif de l’Agly (France). Bull. Mineral., 109: 359–376.

    Google Scholar 

  • Barbosa, J.S.F. 1986. Constitution lithologique et métamorphique de la région granulitique du sud de Bahia — Brésil, Unpublished Doctorat Thesis, University of Paris VI (no de ordre 86-34).

    Google Scholar 

  • Barbosa, J.S.F. 1988. Principais geobarômetros utilizados em granulitos: análise dos resultados de um exemplo do Sul da Bahia — Brasil. Rev. Bras. Geoc. 18(2): 162–169.

    Google Scholar 

  • Barbosa, J.S.F. and Fonteilles, M. 1989. Caracterização dos protolitos da região granulítica do Sul da Bahia — Brasil. Rev. Bras. Geoc. 19(1): 3–16.

    Google Scholar 

  • Bhattacharya, C. 1971. An evaluation of the chemical distinctions between igneous and metamorphic ortopyroxenes. Amer. Miner. 56: 499–506.

    Google Scholar 

  • Brito Neves, B.B.; Cordani, U.G.; Torquato, J.R.F. 1980. Evolução geoeronológica do precambriano do Estado da Bahia. Geologia e Recursos Minerais do Estado da Bahia. Textos Básicos. SME/CPM, 3: 1–101.

    Google Scholar 

  • Brown, G.C. 1981. Space and time in granite plutonism. Phil. Trans. R. Soc. Lond. A301: 321–336.

    Article  Google Scholar 

  • Coolings, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. 1982. Nature and origin of A-type granite with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 80: 189–200.

    Article  Google Scholar 

  • Cordani, U.G. 1973. Evolução geológica pré-cambriana da faixa costeira do Brasil, entre Salvador e Vitória. Unpublished thesis of “Livre Docência” University of São Paulo.

    Google Scholar 

  • Cordani, U.G. and Iyer, S.S. 1979. Geocronological investigation on the precambrian granulite terrain of Bahia, Brazil — Precambrian Research, 9: 255–274.

    Article  Google Scholar 

  • Cordani, U.G.; Sato, K.M.; Marinho, M.M. 1985. The geologic evolution of the ancient granite-greenstone terrane of central-southern Bahia, Brazil. Precambrian Research, 27: 187–213.

    Article  Google Scholar 

  • Costa, L.A.M. da and Mascarenhas, J.F. 1982. The high — grade metamorphic terrains in the interval Mutuipe — Jequié: Archean and Lower Proterozoic of east-Central Bahia. In: International Symposium on Archean and Early Proterozoic Geologic Evolution and Metallogenesis, Salvador, 1982, p. 19–37.

    Google Scholar 

  • Cruz, M.J. 1989. Le massif de Rio Piau: une intrusion de nature gabbroique et anorthositique dans les terrains granulitiques du noyau Jequié, Bahia, Brésil. Unpublished Doctorat Thesis, University of Paris VI (no d’ordre 89-4).

    Google Scholar 

  • Delhal, J. and Demaiffe, D. 1985. U-Pb Archean geochronology of the São Francisco Craton (Eastern Brazil). Rev. Bras. Geoc. 15: 55–60.

    Google Scholar 

  • Ellis, D.J.; Green, D.H. 1979. An experimental study on the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol. 71: 13–23.

    Article  Google Scholar 

  • Ewart, A.; Bryan, W.B.; Gill, J.B. 1973. Mineralogy and Geochemistry of the younger volcanic island of Tonga, S.W. Pacific. J. Petrol., 14: 429–465.

    Google Scholar 

  • Ewart, A. 1982. The mineralogy and petrology of tertiary — recent orogenic vulcanic rocks: with special reference to the andesitic-basaltic compositional range. In: Thorpe, R.S. ed. Andesites. Londres, John Wiley and Sons, p. 27–94.

    Google Scholar 

  • Ganguly, J. 1979. Garnet and clinopyroxene solid solution, and geothermometry based on Fe-Mg distribution coefficient. Geochimica et Cosmochimica Acta, 43: 1021–1029.

    Article  Google Scholar 

  • Garrels, L.M. and MacKenzie, F.T. 1971. Evolution of Sedimentary Rocks. New York, Norton Inc. 307 p.

    Google Scholar 

  • Harley, S.L. 1984. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib. Mineral. Petrol., 86: 359–373.

    Article  Google Scholar 

  • Hasui, Y.; Almeida, F.F.M.; Neves, B.B. de 1978. As estruturas brasilianas. In: Congr. Bras. Geol. 30, Recife, 1978. Anais Recife SBG. v. 6, 2423–2435.

    Google Scholar 

  • Inda, H.A.V. and Barbosa, J.F. 1978. Texto explicativo para o Mapa Geológico do Estado da Bahia. 1:1.000.000, SME/CPM, Salvador, Brasil.

    Google Scholar 

  • Irving, A.J. 1974. Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the delegate basaltic pipes. Australia, J. Petrol. 15:1–40.

    Google Scholar 

  • Iyer, S.S.; Choudhuri, A.; Vasconcelos, M.B.A.; Cordani, U.G. 1984. Radioactive element distribution in the Archean granulite terrane of Jequié-Bahia, Brasil. Contrib. Mineral. Petrol. 85: 95–101.

    Article  Google Scholar 

  • Iyer, S.S.; Choudhuri, A.; Cordani, U.G. 1987. Granulite facies rocks of Brazil: a review of their geologic setting, geochronological evolution petrographic and geochemical characteristics. Journal Geological Society of India, 29: 309–326.

    Google Scholar 

  • Joplin, G.A. 1968. The shoshonite association: a review, J. Geol. Soc. Australia, 15: 275–294.

    Google Scholar 

  • Krogh, E. J. 1988. The garnet-clinopyroxene Fe-Mg geothermometer — a reinterpretation of existing experimental data. Contrib. Mineral. Petrol. 99, 44–48.

    Article  Google Scholar 

  • Kuno, H. 1959. Origin of cenozoic petrographic provinces Japan and surrounding areas. Bull. Volcanol. 20(2): 37–76.

    Article  Google Scholar 

  • Lima, M.I.C. de; Fonseca, E.G. da; Elson, P. de O.; Ghignone, J.I.; Rocha, R.M.; Carmo, U.F. do C.; Silva, J.M.R. da; Siga Junior, O. 1982. Levantamento de Recursos Naturais, Folha SD-24 Salvador. Rio de Janeiro, Projeto Radambrasil. 620 p. (Relatorio 24).

    Google Scholar 

  • Manna, S.S. and Sen S.K. 1974. Origin of garnet in the basic granulites around Saltora, W. Bengal, India. Contrib. Mineral. Petrol. 44: 95–218.

    Article  Google Scholar 

  • Miranda, L.L.F. de; Soares, J.V.; Moraes, A.M.V. de 1982. Geologia da região de Ubaíra — Santa Inês. In: Congr. Bras. Geol., 32, Salvador 1982, Anais, Salvador, SBG, v. 1: 246–259.

    Google Scholar 

  • Miranda, L.L.F. de; Soares, J.V.; Cruz, M.J.M.; Morais, A.M.V. 1985. Projeto Ubaíra Santa Inês — Rel. Final, v 1, SME/CBPM, Salvador.

    Google Scholar 

  • Moorbath, S.; Taylor, P.N.; Jones, N.W. 1986. Dating the oldest terrestrial rocks — fact and fiction. Chemical Geology 57: 63–86.

    Article  Google Scholar 

  • Morrison, G.W. 1980. Characteristics and tectonic setting of the shoshonite rock associations. Lithos 13: 97–108.

    Article  Google Scholar 

  • Nardi, L.V.S. and Lima, E.F. de 1985. A associação shoshonítica de Lavras do sul, RS. Rev. Bras. Geoc., 15(2): 139–146.

    Google Scholar 

  • Newton, R.C. and Haselton, H.T. 1981. Thermodynamics of the garnet — plagioclase — Al2SiO5 — quartz geothermometer. In: Thermodynamics of Minerals and Melts (eds. Newton R.C., Navrotsky, A. and Wood, B.J.) pp. 129–145. Springer-Verlag. N.Y.

    Google Scholar 

  • Newton, R.C. and Perkins, D.III 1982. Thermodynamic calibration of geobarometer based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene) — quartz. Am. Miner. 67: 203–222.

    Google Scholar 

  • Oliveira, E.P. de; Lima, M.I.C. de; Carmo, U.F. do; Wernick, E. 1982. The Archean granulite terrain from east Bahia — Brazil. Rev. Bras. Geoc., 12: (1–3): 356–368.

    Google Scholar 

  • Oliveira, E.P. de and Lima, M.I.C. de; 1982. Aspectos petrográficos das rochas granulíticas do Complexo de Jequié e estimativas das condições físicas do metamorfismo. In: Congr. Bras. Geol. 32, Salvador, 1982 Anais, Salvador, SBG, v.2 p. 589–602.

    Google Scholar 

  • Pearce, T.H.; Gorman, B.E.; Birkett, T.C. 1975. The TiO2 - K2O - P2O5 Diagram: a method of discriminating between oceanic and non-oceanic basalts. Earth Planetary Sci. Letters, 24: 419–426.

    Article  Google Scholar 

  • Pearce, J.A. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J. and Norry, W.J. ed. Continental basalt and mantle xenoliths. Shiva Londres U.K.: 230–250.

    Google Scholar 

  • Percerillo, A. and Taylor, S.R. 1976. Geochemistry of Eocene calco-alkaline volcanic rocks from the Kastomonu Area, Northern Turkey. Contrib. Mineral. Petrol., 58: 63–81.

    Article  Google Scholar 

  • Plimer, I.R. 1983. The geology of tin and tungsten deposits — Course Handbook, Institute of Mineralogy and Petrology, Mining University, Leoben, Austria.

    Google Scholar 

  • Richardson, S.W.; Gilbert, M.C.; Bell, P.M. 1969. Experimental determination of the kyanite — andalusite and andalusite-sillimanite equilibria; the aluminium silicate triple point. Am. J. Sci., 267: 259–272.

    Article  Google Scholar 

  • Seixas, S.R.M.; Marinho, M.M.; Moraes, F.O.; Awdzies, J.; Sampaio, A.R.; Pedrosa, C.S.; Santos, D.A.; Pedreira, S.G.V.V. 1975. Projeto Bahia II — Relatório Final — Geologia das Folhas de Itaberaba e Serrinha. Texto e Mapas. Convênio DNPM/CPRM, Salvador, vol. III.

    Google Scholar 

  • Shaw, D.M. 1968. A review of K-Rb fractionation trends by covariance analysis. Geochimica et Cosmochimica Acta, 32: 573–601.

    Article  Google Scholar 

  • Sighinolfi, G.P. 1970. Investigation into the deep levels of the continental crust: petrology and chemistry of the granulite facies terrains of Bahia (Brazil). Atti. Soc. Tosc. Sci. Nat. Mem., Italia, serie A, 77: 327–341.

    Google Scholar 

  • Sighinolfi, G.P. 1971. Investigation into deep crustal levels: fractionating effects and geochemical trends related to high — grade metamorphism. Geochimica et Cosmochimica Acta. 35: 1005–1021.

    Article  Google Scholar 

  • Sighinolfi, G.P. and Sakai, T. 1977. Uranium and thorium in Archean granulite facies terrains of Bahia (Brazil). Geochemical Journal, 11: 33–39.

    Google Scholar 

  • Sighinolfi, G.P.; Figueredo, M.C.H.; Fyfe, W.S.; Kronberg, B.I.; Oliveira, M.A.F. de 1981. Geochemistry and petrology of the Jequié Granulitic Complex (Brazil): an Archean basement complex. Contrib. Mineral. Petrol. 78: 263–271.

    Article  Google Scholar 

  • Tarney, Y.J. and Windley, B.F. 1977. Chemistry, thermal gradients and evolution of the lower continental crust. J. Geol. Soc. London, 134: 153–172.

    Article  Google Scholar 

  • Tauson, L.V. 1983. Geochemistry and metallogeny of the latitic series. Inter. Geol. Rev., 25: 125–135.

    Article  Google Scholar 

  • Toniatti, G. and Barbosa, J.S.F. 1973. O manganês de Maraú — Bahia, Avaliação de Reservas. In: Congr. Bras. Geol. 27, Sergipe, 1973. Anais Sergipe, SBG. v. 2, p. 121–430.

    Google Scholar 

  • Valarelli, J.V.; Barbosa, J.S.F.; Hipolito, R.; Bello, S.R.M. 1982. Paragênese do Protominério Metamórfico de Manganês de Maraú, Bahia. In: Congr. Bras. Geol. 32, Salvador, 1982. Anais Salvador, SBG, v. 3: p. 819–835.

    Google Scholar 

  • Vignol, L.M. 1987. Etudes géochimiques des granulites du Brésil et de la Zone d’Ivrea: les éléments (K, Rb, Sr, Sm, Nd) et les isotopes radiogéniques (Sr et Nd). Unpublished D.E.A. Thesis, Paris VII, Institut de Physique du Globe.

    Google Scholar 

  • Wada, K. 1981. Contrasted petrological relations between tholeiitic and calc-alkalic series from Funagata Volcano, Northeast Japan. J. Japan. Assoc. Min. Petr. Econ. Geol. 76: 215–232.

    Article  Google Scholar 

  • Wang Kaiyi, Ian Yuehua; Yang Ruiying; Chen Yifei 1985. REE Geochemistry of early Precambrian charnockites and tonalitic — granodioritic gneisses of the Qianan Region, Eastern Hebei, North China. Precambrian Research 27: 63–84.

    Article  Google Scholar 

  • Wells, P.R.A. 1977. Pyroxene thermometry in simple and complex systems. Contrib. Mineral. Petrol., 62: 129–139.

    Article  Google Scholar 

  • Wells, P.R.A. 1979. Chemical and thermal evolution of Archean sialic crust, Southern West Greenland. J. Petrol., 20: 187–226.

    Google Scholar 

  • Wilson, N. 1987. Combined Sm-Nd, Pb/Pb and Rb-Sr goechronology and isotope geochemistry in poly-metamorphic Precambrian terrains: examples from Bahia, Brazil and Channel Island, U.K. Master of Science. Thesis, Oxford University, U.K.

    Google Scholar 

  • Wilson, N.; Moorbath, S.; Taylor, P.N.; Barbosa, J.S.F. 1988. Archean and early Proterozoic crustal evolution in the São Francisco Craton, Bahia, Brazil, Chemical Geol. v. 70 (1–2) p. 146.

    Article  Google Scholar 

  • Wood, B.J. and Banno, S. 1973. Gamet-Orthopyroxene and Orthopyroxene — Clinopyroxene relationships in simple and complex systems. Contrib. Mineral. Petrol. 42: 109–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Barbosa, J.S.F. (1990). The Granulites of the Jequié Complex and Atlantic Coast Mobile Belt, Southern Bahia, Brazil — An Expression of Archean/Early Proterozoic Plate Convergence. In: Vielzeuf, D., Vidal, P. (eds) Granulites and Crustal Evolution. NATO ASI Series, vol 311. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2055-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2055-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7422-3

  • Online ISBN: 978-94-009-2055-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics