Skip to main content

Glacial to Interglacial Changes in the Isotopic Gradients of Southern Ocean Surface Water

  • Chapter
Geological History of the Polar Oceans: Arctic versus Antarctic

Part of the book series: NATO ASI Series ((ASIC,volume 308))

Abstract

The Atlantic sector of the Southern Ocean is a region characterized by intense horizontal gradients in surface water properties, including the stable isotopic content. These gradients are climatically sensitive and can be exploited for paleoceanographic purposes, provided there is a means of recording their variability. Here we show that core top values of δ 18O and δ 13C in the planktic foraminiferal species Neoghboquadrina pachyderma l.c. follow those expected for calcite precipitated in equilibrium with surface waters. The entire equator-to-pole gradient in δ 18Ocalcite for surface waters is roughly 6‰, and the δ 18O of core top N. pachyderma records fully half of this gradient, increasing by 3‰ over a latitudinal range of 41° – 60°S. Meanwhile, the geographic pattern of δ 13O of core top N. pachyderma is similar to observed trends in δ 13C of surface ΣCO2. Highest values are recorded near the present Antarctic Polar Front (APF), where gas exchange rates are the highest; lower values occur both to the south, in the Weddell Gyre, and to the north, near the Subtropical Convergence. Thus, the isotopic composition of N. pachyderma from Quaternary sediments may serve as an effective tracer of the paleochemistry of Southern Ocean surface waters.

The δ 18O and δ 13C of glacial-age N. pachyderma recovered from a transect of South Atlantic cores provide a dynamic contrast to the present surface stable isotopic distribution. While the latitudinal δ 18O gradient in glacial N. pachyderma is virtually the same as the recent, δ 13C values from cores both north and south of the present APF are reduced by an average of 0.8‰. The highest glacial δ 13C values (in absolute terms) are observed in sites roughly 5° north of the present APF, suggesting a possible northward translation of the zone of maximum CO2 exchange between surface waters and the atmosphere.

If in fact the δ 13C of N. pachyderma reflects the δ 13C of surface ΣCO2, the overall reduction of values represents a change in the wrong direction for models which explain lower atmospheric CO2 during glacial periods by increased Southern Ocean productivity. This reduction is. however, compatible with documented changes in Circumpolar Deep Water (CPDW), whose δ 13C was affected by varying contributions of North Atlantic Deep Water. Since CPDW is the ultimate source for most of the Southern Ocean surface waters, the most obvious explanation of the surface water δ 13C shift involves a direct transferral of water mass properties from upwelling CPDW.

The strong sub-Antarctic isotopic gradients complicate generalized interpretations of the glacial circulation, because even slight frontal movements can have a significant effect on foraminiferal isotopic values. By the same token, however, the N. pachyderma isotopic anomalies may be among the most quantitative and reliable measures of Southern Ocean frontal shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bard, E.: 1988, ‘Correction of AMS 14C ages measured in planktonic foraminifera: Paleoceanographic implications’, Paleoceanography 3, 635–645.

    Article  Google Scholar 

  • Barnola, J. M., D. Raynaud, Y. S. Korotkevich, and C Lorius: 1987, ‘Vostok ice core provides a 160.000 year record of atmospheric CO2’, Nature 329, 408–414.

    Article  Google Scholar 

  • Berger, W. H., J. S. Killingley, and E. Vincent: 1978, ‘Stable isotopes in deep-sea carbonates: Box core ERDC-92, west equatorial Pacific’, Oceanolog. Acta 1, 203–216.

    Google Scholar 

  • Boyle, E.: 1988a, ‘The role of vertical chemical fractionation in controlling Late Quaternary atmospheric carbon dioxide’, J. Geophys. Res. 93, 15701–15715.

    Article  Google Scholar 

  • Boyle, E.: 1988b, ‘Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles’, Nature 331, 55–56.

    Article  Google Scholar 

  • Broecker, W. S.: 1982, ‘Glacial to interglacial changes in ocean chemistry’, Prog. Oceanog. 11, 151–197.

    Article  Google Scholar 

  • Broecker, W. S., and T. H. Peng: 1982, Tracers in the Sea, Eldigio Press, Palisades, 690 p.

    Google Scholar 

  • Broecker, W. S., T. Takahashi, and T. Takahashi: 1985, ‘Sources and flow patterns of deepocean waters as deduced from potential temperature, salinity, and initial phosphate concentration’, J. Geophys. Res. 90, 6925–6939.

    Article  Google Scholar 

  • Bromwich, D. H., and C. J. Weaver: 1983, ‘Latitudinal displacement from main moisture source controls δ18O of snow in coastal Antarctica’, Nature 301,145–147.

    Article  Google Scholar 

  • Burckle L. H., and D. W. Cooke: 1983, ‘Late Pleistocene Eucampia antarctica abundance stratigraphy in the Atlantic sector of the Southern Ocean’, Micropaleont. 29, 6–10.

    Article  Google Scholar 

  • CLIMAP Project Members: 1976, ‘The surface of the ice-age earth’, Science 191, 1131–1137.

    Article  Google Scholar 

  • Cooke, D. W.: 1978, ‘Variations in the seasonal extent of sea ice in the Antarctic during the last 140.000 years determined from deep sea sediments’, Ph.D. thesis, Columbia University, 145 p.

    Google Scholar 

  • Craig, H., and L. I. Gordon: 1965, ‘Deuterium and oxygen-18 variations in the ocean and marine atmosphere’, in D. Schink, and B. H. Corliss (eds.), Symp. Proc. Marine Chemistry, Occ. Publ. 3, University of Rhode Island, Narragansett, pp. 277–374.

    Google Scholar 

  • Duplessy, J.-C., N. J. Shackleton, R. G. Fairbanks, L. D. Labeyrie, D. W. Oppo, and N. Kallel: 1988, ‘Deep water source variations during the last climatic variations and their impact on the global deep water circulation’, Paleoceanography 3, 343–360.

    Article  Google Scholar 

  • Emiliani, C: 1955, ‘Pleistocene temperatures’, J. Geol. 63, 538–578.

    Article  Google Scholar 

  • Epstein, S., R. Buchsbaum, H. A. Lowenstam, and H. C. Urey: 1953, ‘Revised carbonate-water isotopic temperature scale’, Geol. Soc. Amer. Bull. 64, 1315–1326.

    Article  Google Scholar 

  • Fairbanks, R. G.: in press, ‘Glacio-eustatic sea level record 0 – 16.000 years before present: Influence of glacial melting rates on Younger Dryas event and deep ocean circulation’, Nature.

    Google Scholar 

  • Fairbanks, R. G., M. Sverdlove, R. Free, P. H. Wiebe, and A. W. H. Bé: 1982, ‘Vertical distribution and isotopic composition of living planktonic foraminifera from the Panama Basin’, Nature 298, 841–844.

    Article  Google Scholar 

  • Hays, J. D., J. A. Lozano, N. J. Shackleton, and G. Irving: 1976, ‘Reconstruction of the Atlantic and western Indian Ocean sectors of the 18.000 B.P. Antarctic Ocean’, in R. M. Cline, and J. D. Hays (eds.), Investigation of Late Quaternary Paleoceanography and Paleoclimatology, Geol. Soc. Amer. Memoir 145, pp. 337–372.

    Google Scholar 

  • Jacobs, S. S., R. G. Fairbanks, and Y. Horibe: 1985, ‘Origin and evolution of water masses near the Antarctic continental margin: Evidence from H2 18O/H2 16O ratios in seawater’, in S. S. Jacobs (ed.), Oceanology of the Antarctic Continental Shelf, Antarctic Res. Ser. 43, Amer. Geophys. Union, Washington, pp. 59–86.

    Chapter  Google Scholar 

  • Jouzel, J., C. Lorius, J. R. Petit, C. K. Genthon, N. I. Barkov, V. M. Kotlyakov, and V. M. Petrov: 1987, ‘Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160.000 years)’, Nature 329, 403–407.

    Article  Google Scholar 

  • Kallel, N., L. D. Labeyrie, A. Juillet-Leclerc, and J.-C Duplessy: 1988, ‘A deep hydrological front between intermediate and deep-water masses in the glacial Indian Ocean’, Nature 333, 651–655.

    Article  Google Scholar 

  • Knox, F. E., and M. B. McElroy: 1984, ‘Changes in atmospheric CO2; influence of marine biota at high latitudes’, J. Geophys. Res. 89, 4629–4637.

    Article  Google Scholar 

  • Kroopnick, P. M.: 1985, ‘The distribution of carbon-13 in the world oceans’, Deep-Sea Res. 32, 57–84.

    Article  Google Scholar 

  • Labeyrie, L. D., J. J. Pichon, M. Labracherie, P. Ippolito, J. Duprat, J.-C. Duplessy: 1986, ‘Melting history of Antarctica during the past 60.000 years’, Nature 322, 701–706.

    Article  Google Scholar 

  • Levitus, S.: 1982, ‘Climatological atlas of the world’, NOAA Prof. Paper 13.

    Google Scholar 

  • Liss, P. S., and L. Merlivat: 1986, ‘Air-sea gas exchange rates: introduction and synthesis’, in P. Buat-Menard (ed.), The Role of Air — Sea Exchange in Geochemical Cycling, Reidel, Dordrecht, pp. 113–127.

    Google Scholar 

  • Lozano, J. A., and J. D. Hays: 1976, ‘Relationships of radiolarian assemblages to sediment types and physical oceanography in the Atlantic and western Indian sectors of the Antarctic Ocean’, in R. M. Cline, and J. D. Hays (eds.), Investigation of Late Quaternary Paleoceanography and Paleoclimatology, Geol. Soc. Amer. Memoir 145, 303–336.

    Google Scholar 

  • Mix, A. C.: 1987, ‘The oxygen-isotope record of glaciation’, in W. F. Ruddiman, and H. E. Wright Jr. (eds.), North America and Adjacent Oceans During the Last Deglaciation, The Geology of North America, Vol. K-3, Geol. Soc. Amer., Boulder, pp. 111–135.

    Google Scholar 

  • Mook, W. G., J. C. Bommerson, and W. H. Staverman: 1974, ‘Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide’, Earth Planet. Sci. Lett. 22, 169–176.

    Article  Google Scholar 

  • Neftel, A., H. Oeschger, J. Schwander, B. Stauffer, and R. Zumbrunn: 1982, ‘Ice core measurements give atmospheric pCO2 content during the past 40.000 years’, Nature 295, 220–223.

    Article  Google Scholar 

  • Oppo, D. W., and R. G. Fairbanks: 1987, ‘Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25.000 years: Northern Hemisphere modulation of the Southern Ocean’, Earth Planet. Sci. Lett. 86, 1–15.

    Article  Google Scholar 

  • Oppo, D. W., and R. G. Fairbanks: in press, ‘Carbon isotopic composition of tropical surface water during the past 22.000 years’, Paleoceanography.

    Google Scholar 

  • Potter, J. R., and J. G. Paren: 1985, ‘Interaction between ice shelf and ocean in George VI Sound, Antarctica’, in S. S. Jacobs (ed.), Oceanology of the Antarctic Continental Shelf, Antarctic Res. Ser. 43, Amer. Geophys. Union, Washington, pp. 35–58.

    Chapter  Google Scholar 

  • Sackett, W. M., W. R. Eckelmann, M. L. Bender, and A. W. H. Bé: 1965, ‘Temperature dependence of carbon isotope composition in marine plankton and sediments’, Science 148, 235–237.

    Article  Google Scholar 

  • Spero, H.: 1988, ‘Extracting environmental information from planktonic foraminiferal δ13C data’, Nature 335, 717–719.

    Article  Google Scholar 

  • Thunell, R. C., and L. A. Reynolds: 1984, ‘Sedimentation of planktonic foraminifera: Seasonal changes in species flux in the Panama Basin’, Micropaleont. 30, 243–262.

    Article  Google Scholar 

  • Toggweiler, J. R., and J. L. Sarmiento: 1985, ‘Glacial to interglacial changes in atmospheric carbon dioxide: The critical role of ocean surface water in high latitudes’, in E. T. Sundquist, and W. S. Broecker (eds.), The Carbon Cycle and Atmospheric CO 2 Natural Variations Archean to Present, Geophys. Monogr. 32, Amer. Geophys. Union, Washington, pp. 163–184.

    Chapter  Google Scholar 

  • Wefer, G., E. Suess, W. Balzer, G. Liebezeit, P. J. Müller, C. A. Ungerer, and W. Zenk: 1982, ‘Fluxes of biogenic components from sediment trap deployment in circumpolar waters of the Drake Passage’, Nature 299, 145–147.

    Article  Google Scholar 

  • Wenk, T., and U. Siegenthaler: 1985, ‘The high-latitude ocean as a control of atmospheric CO2’, in E. T. Sundquist, and W. S. Broecker (eds.), The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present, Geophys. Monogr. 32, Amer. Geophys. Union, Washington, pp. 185–194.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Charles, C.D., Fairbanks, R.G. (1990). Glacial to Interglacial Changes in the Isotopic Gradients of Southern Ocean Surface Water. In: Bleil, U., Thiede, J. (eds) Geological History of the Polar Oceans: Arctic versus Antarctic. NATO ASI Series, vol 308. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2029-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2029-3_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7410-0

  • Online ISBN: 978-94-009-2029-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics