Skip to main content

Abstract

The history of the physical sciences is replete with instances, where analogy has been a key element in the construction of theories of natural phenomena. This is manifestly evident in contemporary physics, as we draw ever closer to a “world view” which attempts to unify space-time-matter at all levels—from the microcosm to the macrocosm. Indeed, out of analogy has flowed unity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haraway, D.J. (1976). Crystals, Fabrics, and Fields: metaphors of Organicism in Twentieth-Century Developmental Biology. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  2. Sheldrake, R. (1981). A new Science of Life. Tarcher, Los Angeles.

    Google Scholar 

  3. Böhm, D. (1980) Wholeness and the Implicate Order. Routledge and Kegan Paul, London.

    Google Scholar 

  4. Porter, K.R. (ed.) (1984). J. Cell biol. 99: 1s–248s.

    Google Scholar 

  5. Clegg, J.S. (1984). Amer. J. Physiol 246: R 133.

    Google Scholar 

  6. Srere, P.A. (1987). Ann. Rev. biochem., in press.

    Google Scholar 

  7. Welch, G.R. (ed.) (1985). Organized Multieniyme Systems: Catalytic properties. Academic Press, New York.

    Google Scholar 

  8. Welch, G.R. and Clegg, J.S. (eds.) (1987). Organization of Cell Metabolism. Plenum Press, New York.

    Google Scholar 

  9. Friedrich, P. (1984). Supramolecular Enzyme Organization. Pergamon Press, New York.

    Google Scholar 

  10. Sitte, P. (1980). In Cell Compartmentation and Metabolic Channelling (L. Nover, F. Lynen, and K. Mothes, eds.), p. 17. Elsevier/North Holland, New York.

    Google Scholar 

  11. Srere, P.A. (1981). Trends Biochem. Sci. 6: 4.

    Article  Google Scholar 

  12. Porter, K.R. and Tucker, J.B. (1981). SciAmer. 244: 40.

    Article  Google Scholar 

  13. Schliwa, M., van Blerkom, J., and Porter, K.R. (1981). Proc. Nat. Acad. Sci. USA 78: 4329.

    Article  ADS  Google Scholar 

  14. Peters, R.A. (1930). Trans. Faraday Soc. 26: 797.

    Article  Google Scholar 

  15. Welch, G.R. and Keleti, T. (1981). J. Theor. Biol. 93: 701.

    Article  MathSciNet  Google Scholar 

  16. Welch, G.R. (1984). In Dynamics of Biochemical Systems (J. Richard and A. Cornish-Bowden, eds.), p. 85. Plenum Press, New York.

    Google Scholar 

  17. Welch, G.R. (1977). Prog. Biophys. Mol. Biol. 32: 103.

    Article  Google Scholar 

  18. Welch, G.R., Somogyi, B., and Damjanovich, S. (1982). Prog. Biopltys. Mol. Biol. 39: 109.

    Article  Google Scholar 

  19. Somogyi, B., Welch, G.R., and Damjanovich, S. (1984). Biochim. Biophys. Acta (Rexiews on Bioenergetics) 768: 81.

    Google Scholar 

  20. Welch, G.R. and Berry, M.N. (1985). In Organized Multienzyme systems: Catalytic Properties (G.R. Welch, ed.), p. 419. Academic Press, New York.

    Google Scholar 

  21. Welch, G.R. and Berry M.N. (1983). In Coherent Excitations in Biological Systems (H. Fröhlich and F. Kremer, eds.), p. 95. Springer-Verlag, New York/Heidelberg.

    Google Scholar 

  22. Mitchell, P. (1979). Eur. J. Biochem. 95: 1.

    Article  Google Scholar 

  23. Volkenstein, M. (1981). J. Theor. Biol. 89: 45.

    Article  Google Scholar 

  24. Conrad, M. (1979). J. Theor. Biol. 79: 137.

    Article  Google Scholar 

  25. Fröhlich, H. and Kremer, F. (eds.) (1983). Coherent Excitations in Biological Systems Springer-Verlag, New York/Heidelberg.

    Google Scholar 

  26. Westerhoff, H.V. Tsong, T.Y., Chock, P.B. Chen, Y.D., and Astumian, R.D. (1986). Proc. Nat. Acad. Sci. USA 55: 4734.

    Article  ADS  Google Scholar 

  27. Welch, G.R. (ed.) (1986). The Fluctuating Enzyme. Wiley, New York.

    Google Scholar 

  28. Lumry, R. and Gregory, R.B. (1986). In The Fluctuating Enzyme (G.R. Welch, ed.). p. 1. Wiley, New York.

    Google Scholar 

  29. Nagle, J.F. and Tristram-Nagle, S. (1983). J. Membr. Biol. 74: 1.

    Article  Google Scholar 

  30. Welch, G.R. and Kell, D.B. (1986). In The Fluctuating Enzyme (G.R. Welch, ed.), p. 451. Wiley, New York.

    Google Scholar 

  31. Fröhlich, H. (1980). Adv. Electron. Election Phys. 53: 85.

    Article  Google Scholar 

  32. Fröhlich, H. (1986). In The Fluctuating Enzyme (G.R. Welch, ed.), p. 421. Wiley, New York.

    Google Scholar 

  33. Westerhoff, H.V. and Kamp, F. (1987). In Organization of Cell Metabolism (G.R. Welch and J.S. Clegg, eds.), p. 339. Plenum Press, New York.

    Google Scholar 

  34. Szent-Györgyi, A. (1941). Nature (London) 148: 157.

    Article  ADS  Google Scholar 

  35. Lewis, J. (1979). Ciba Found, Symp. 67: 65.

    Google Scholar 

  36. Rashevsky, N. (1973). In Foundations of Mathematical Biology, Vol. 3 (R. Rosen, ed.), p. 177. Academic Press. New York.

    Google Scholar 

  37. Prigogine. I. (1980). From Being to Becoming: Time and Complexity in the Physical Sciences. Freeman, San Francisco.

    Google Scholar 

  38. Thom, R. (1975). Structural Stability and Morphogenesis. Benjamin, Reading, Massachusetts.

    Google Scholar 

  39. Misner, C.W., Thorne, K.S., and Wheeler, J.A. (1973). Gravitation. Freeman, San Francisco.

    Google Scholar 

  40. McVittie, G.C. (1949). Cosmological Theory. Methuen, London.

    Google Scholar 

  41. Morse, P.M. and Feshbach, H. (1953). Methods of Theoretical Physics. McGraw-Hill, New York.

    MATH  Google Scholar 

  42. Keleti, T. and Welch, G.R. (1984). Biochem. J. 223: 299.

    Google Scholar 

  43. Ryder, L.H. (1985). Quantum Field Theory. Cambridge University press, Cambridge.

    MATH  Google Scholar 

  44. Ramond, P. (1981). Field Theory: a Modem Primer. Benjamin, Reading, massachusetts.

    Google Scholar 

  45. Welch, G.R. (1985). J. Theor. Biol. 114: 433.

    Article  Google Scholar 

  46. Van Rysselberghe, P. (1963). Thermodynamics of Irreversible Processes. Hermann, Paris.

    MATH  Google Scholar 

  47. Welch, G.R. (1977). J. Theor. biol. 68: 267.

    Article  Google Scholar 

  48. Richardson, I.W. and Rosen, R. (1979). J. Theor. Biol. 79: 415.

    Article  Google Scholar 

  49. Richardson, I.W. (1980). J. Theor.Biol. 85: 745.

    Article  Google Scholar 

  50. Graham, R. (1977). Z f. Phvs. B 26: 281.

    ADS  Google Scholar 

  51. Graham, R. (1977). Z. J. Phys. B. 26: 397.

    Article  ADS  Google Scholar 

  52. Graham, R. (1978). In Stochastic Processes in Nonequilibrium Systems (L. Garrido, P. Seglar, and P.J. Shepherd, eds.), p. 82. Springer-Verlag, New York/Heidelberg.

    Chapter  Google Scholar 

  53. Graham, R. (1981). In Stochastic Nonlinear Systems (L. Arnold and R. Lefever, eds.). Springer-Verlag, New York/Heidelberg.

    Google Scholar 

  54. Peusner, L. (1982). J. Phys. Chem 77: 5500.

    Article  Google Scholar 

  55. Peusner, L. (1986). Studies in Network Thermodynamics. Elsevier, Amsterdam.

    Google Scholar 

  56. Prigogine, I. (1967). introduction to Thermodvnamics of Ineversible Processes (3rd. Ed.). Wiley, New York.

    Google Scholar 

  57. Prigogine, I. (1967). introduction to Thermodvnamics of Ineversible Processes (3rd. Ed.). Wiley, New York.

    Google Scholar 

  58. Rice, S.A. (1985). Diffusion-Limited Reactions. Elsevier, Amsterdam.

    Google Scholar 

  59. DeGroot, S.R. and Mazur, P. (1969). Non-equlibrium Thermodynamics. Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  60. Risken.H. (1984). The Fokker-Planck Equation. Springer-Verlag. New York/Heidelberg.

    Google Scholar 

  61. Shaitan, K.V. and Rubin, A.B. (1982) Mol. Biol. (USSR) 16: 1004.

    Google Scholar 

  62. Gavish, B. (1978). Biophys. Struct. Mech. 4: 37.

    Article  Google Scholar 

  63. Berkowitz, M., Morgan/ J.D., McCammon, J.A., and Northrup, S.U. (1983). J. Chem. Phys. 79: 5563.

    Article  ADS  Google Scholar 

  64. Lumry, R. and Biltonen, R. (1969). In Structure and Stability of Biological Macromolecules (S.N. Timasheff and G.D. Fasman, eds.), p. 65. Dekker, New York.

    Google Scholar 

  65. Nicolis, G. and Prigogine, I (1977). Self-Organization in Nonequilibrium Systems. Wiley, New York.

    MATH  Google Scholar 

  66. Nelson, E. (1985). Quantum Fluctuations. Princeton University Press. Princeton.

    MATH  Google Scholar 

  67. Ji, S. (1985). J. Theor. Biol. 116: 399.

    Article  Google Scholar 

  68. Mishra, R.K., Bhaumik, K., Mathur, S.C., Mitra, S. (1979). Int. J. Quant. Chem. 16: 691.

    Article  Google Scholar 

  69. Jensen, H.H. (1964). In Phonons and Phonon Interactions (T.A. Bäk, ed.). p. 1. Benjamin, New York/amsterdam.

    Google Scholar 

  70. Bäk, T.A. (1963). Contributions to the Theoty of Chemical Kinetics. Benjamin, New York.

    Google Scholar 

  71. Quigg, C. (1983). Gauge Theories of the Stivng, Weak, and Electromagnetic Interactions. Benjamin. Reading, Massachusetts.

    Google Scholar 

  72. Kell, D.B. and Westerhoff, H.V. (1985). In Organized Multienzyme Systems: Catalytic Properties (G.R. Welch, ed.), p. 63. Academic Press, New York.

    Google Scholar 

  73. Beriy, M.N. (1981). FEBS Lett. 134: 133.

    Article  Google Scholar 

  74. McClare, C.W.F. (1974). Ann N.Y. Acad. Sci. 227: 74.

    Article  ADS  Google Scholar 

  75. Cooper, A. (1984). Pivg. Biophys. Mol. Biol. 44: 181.

    Article  Google Scholar 

  76. Boslough, J. (1985). Stephen Hawkings Universe. Morrow, New York.

    Google Scholar 

  77. Crease, R.P. and Mann, C.C. (1986). The Second Creation: Makers of the Revolution in Twentieth-Century Physics. Macmillan, New York.

    Google Scholar 

  78. Kuhn, T.S. (1970). The Structure of Scientific Rewlutions (2nd Ed.) University of Chicago Press. Chicago.

    Google Scholar 

  79. Mayr, E. (1982). The Growth of Biological Thought. Harvard University Press, Cambridge, massachusetts.

    Google Scholar 

  80. Barrow, J.D. and Tipler, F.J. (1986). The Anthropic Cosmological Principle. Oxford University Press, Oxford/New York.

    Google Scholar 

  81. Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, New York/Heidelberg.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Welch, G.R., Smith, H.A. (1990). On the Field Structure of Metabolic Space-Time. In: Mishra, R.K. (eds) Molecular and Biological Physics of Living Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1890-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1890-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7343-1

  • Online ISBN: 978-94-009-1890-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics