Skip to main content

Abstract

When considering the possible impact of bacteria and their genetics on natural environments, it is not only survival and propagation, but also gene transfer that are factors of major concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birge EA. Bacterial and bacteriophage genetics, 2nd ed. Berlin: Springer Verlag, 1988: 183–291.

    Google Scholar 

  2. Hardy K. Bacterial plasmids, 2nd ed. Washington DC: American Society for Microbiology, 1986: 23–58.

    Google Scholar 

  3. Günther E. Lehrbuch der Genetik, 4. Auflage, Stuttgart: Gustav Fischer, 1984: 389.

    Google Scholar 

  4. Winnacker EL. Gene and Klone, Weinheim: Verlag Chemie, 1985: 111.

    Google Scholar 

  5. Stotzky G, Babich H. Fate of genetically-engineered microbes in natural environments. Adv Appl Microbiol 1986; 31: 93–138.

    Article  PubMed  CAS  Google Scholar 

  6. Trevors JT, Barkar T, Bourquin AW. Gene transfer among bacteria in soil and aquatic environments: a review. Can J Microbiol 1987; 33: 191–198.

    Article  CAS  Google Scholar 

  7. Schilf W, Klingmüller W. Experiments with Escherichia coli on the dispersal of plasmids in environmental samples. Recombinant DNA Tech Bull, Washington, 1983; 6 (3): 101–102.

    Google Scholar 

  8. Schilf W, Klingmüller W. Untersuchungen über die Ausbreitung genetisch veränderter Bakterien und bakterieller Plasmide in der Umwelt. In: Sicherheitsforschung zur Gentechnologie, Materialien 29, Herausgeber: Bayerisches Staatministerium für Landesentwicklung und Umweltfragen, Seiten 1–76, 1984.

    Google Scholar 

  9. Trevors JT, Oddie KM. R-Plasmid transfer in soil and water. Can J Microbiol 1986; 32: 610–613.

    Article  PubMed  CAS  Google Scholar 

  10. Van Elsas JD, Govaert JM, van Veen JA. Transfer of plasmid pFT-30 between bacilli in soil as influenced by bacterial population dynamics and soil conditions. Soil Biol Biochem 1987; 19: 639–647.

    Article  Google Scholar 

  11. Trevors JT, Starodub ME. R-plasmid transfer in non-sterile agricultural soil. System Appl Microbiol 1987; 9: 312–315.

    CAS  Google Scholar 

  12. van Elsas JD, Trevors JT, Starodub ME. Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol Ecol 1988; 53: 299–306.

    Article  Google Scholar 

  13. van Elsas JD, Trevors JT, Starodub ME. Plasmid transfer in soil and rhizosphere. In: Klingmüller W, ed. Risk assessment for deliberate releases, Heidelberg: Springer-Verlag, 1988: pp 10–17.

    Google Scholar 

  14. Hirsch RP, Spokes JR. Rhizobium leguminosarum as a model for investigating gene transfer in soil. In: Klingmüller W, ed. Risk assessment for deliberate releases, Heidelberg: Springer-Verlag 1988; pp 10–17.

    Google Scholar 

  15. Döhler K, Klingmüller W. Genetic interaction of Rhizobium leguminosarum biovar viceae with Gram-negative bacteria. In: Klingmüller W, ed. Risk assessment for deliberate releases, Heidelberg: Springer-Verlag: 1988; pp 18–28.

    Google Scholar 

  16. Kleeberger A, Castorph H, Klingmüller W. The rhizosphere microflora of wheat and barley with special reference to Gram-negative bacteria. Arch Microbiol 1983; 136: 306–311.

    Article  Google Scholar 

  17. Singh M, Kleeberger A, Klingmüller W. Location of nitrogen fixation (nif) genes on indigenous plasmids of Enterobacter agglomerans. Mol Gen Genet 1983; 190: 373–378.

    Article  CAS  Google Scholar 

  18. Singh M, Klingmüller W. Cosmid cloning of pEA3, a large plasmid of Enterobacter agglomerans containing nitrogenase structural genes. Plant Soil 1986; 90: 235–242.

    Article  CAS  Google Scholar 

  19. Kreutzer R. Restriktionskartierung eines nif-Plasmids von Enterobacter agglomerans und genetische Charakterisierung der von ihm getragenen nif-gene [Diplomarbeit]. Bayreuth, University of Bayreuth, 1986.

    Google Scholar 

  20. Singh M, Kreutzer R, Acker G, Klingmüller W. Localization and physical mapping of a plasmid-borne 23 kb nif-gene cluster from Enterobacter agglomerans showing homology to the entire nif-gene cluster of Klebsiella pneumoniae M5al. Plasmid 1988; 19: 1–12.

    Google Scholar 

  21. Kreutzer R, Singh M, Klingmüller W. Identification and characterization of the nifH and nifJ promoter regions located on the plasmid pEA of Enterobacter agglomerans 333. 1989; Gene 78: 101–109.

    Google Scholar 

  22. Herterich S. Untersuchung der Transfereigenschaft des Plasmids pEA9 aus Enterobacter agglomerans 339 und Entwicklung eines Transposon- Mutagenesesystems [Diplomarbeit], Bayreuth, University of Bayreuth, 1986.

    Google Scholar 

  23. Min, B.W.: Erzeugung von nif--Mutanten des Stamms Enterobacter agglomerans 339 durch Transposon-Mutagenese und Untersuchung der Transfereigenschaft seines Plasmids pEA9 [Diplomarbeit]. Bayreuth, University of Bayreuth, 1986.

    Google Scholar 

  24. Klingmüller W, Herterich S, Min BW. Molecular analysis of N2-fixation in associative Enterobacter. In: Skinner FA et al., eds Nitrogen fixation with non-legumes. Dordrecht: Kluwer Academic Publishers, 1989; 172–178.

    Google Scholar 

  25. Klingmüller W. Molecular analysis of nitrogen fixation in Enterobacter. In: Proceedings of the International Symposium on Plant Biotechnology, Gyeongsang National University, Chinju, South Korea 1988; 41–56.

    Google Scholar 

  26. Simon R. High frequency mobilization of Gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 1984; 196: 413–420.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Klingmüller, W., Dally, A., Fentner, C., Steinlein, M. (1990). Plasmid transfer between soil bacteria. In: Fry, J.C., Day, M.J. (eds) Bacterial Genetics in Natural Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1834-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1834-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7318-9

  • Online ISBN: 978-94-009-1834-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics