Skip to main content

Taxonomic and Metabolic Microbial Diversity During Composting

  • Chapter
The Science of Composting

Summary

A great variety and high numbers of aerobic thermophilic heterotrophic and/or autotrophic bacteria growing at temperatures between 60–80°C have been isolated from thermogenic (temperature 60–80°C) composts in several composting facilities in Switzerland. They include strains related to the genus Thermus (T. thermophilus. T. aquaticlls. and several other new strains). Bacillus schlegelii, Hydrogenohacter spp., and of course heterotrophic sporeforming Bacilli. This contrasts with the generally held belief that thermogenic composts (> 60°C) support only a very low diversity of heterotrophic thermophiles. This biodiversity suggests efficient decomposition of organic matter at temperatures above 60°C, and a good thermo-hygienization.

During the terminal cooling or maturation phase of composts high numbers and a great metabolic diversity of mesophilic bacteria was observed, including nitrogen-fixers. sulfur-oxidizers. hydrogen-oxidizers, nitrifyiers. and producers of extracellular polysaccharides or bacterial humin. This microbial diversity plays an essential role for compost stabilization. It is suggested that mature compost application improves soil chemistry and microbiology, and can thus be regarded beneficial for agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allievi, L., Marchesini, A., Salardi, C., Piano, V., and Ferrari, A. (1993). Plant quality and soil residual fertility six years after a compost treatment. Bioresource Technology, 43, 85–89.

    Article  CAS  Google Scholar 

  2. Amner, W., McCarthy, A.J., and Edwards C. (1988). Quantitative assessment of factors affecting the recovery of indigenous and release thermophilic bacteria from compost. Appl. Environ. Microbiol., 54, 3107–3112.

    CAS  Google Scholar 

  3. Aragno, M. (1992). Aerobic, chemolithoautotrophic, thermophilic bacteria. In: Thermophilic Bacteria (Ed. Knstjansson, J.K.), CRC Press Inc., Boca Raton U.S.A., pp. 77–103

    Google Scholar 

  4. Beffa, T., Lott Fischer. J., Aragno, M., Selldorf, P., Gandolla, M., and Gumowski, P. (1994). Etude du developpement de moisissures potentiellement allérgeniques (en particulier Aspergillus Jumigatus) au cours du compostage en Suisse. Swiss Federal Environmental Office (OFEFPBUWAL, reference RD/OFEFP/31O.92.84), pp.1-95.

    Google Scholar 

  5. Beffa, T., Selldorf, P., Gumowski, P., Georgen, F., Loti Fischer, J., Gandolla, M., and Aragno, M. (1994). Anwesenheit, Verteilung und medizinische Aspekte von Schimmelpilzen (im besonderen Aspergillus Jumigatus) in verschiedenen Kompostsystemen der Schweiz. In: Gesundheitsrisiken bei der Entsorgung kommunaler Abfälle (Eds Stalder, K. & Verkoyen, C), Verlag Die Werkstatt GmbH, Göttingen (Germany), pp. 173–190.

    Google Scholar 

  6. Beffa, T., Blanc, M., Lott Fischer, J., Lyon P-F., Marilley L., Aragno M. (1995). Composting: A microbiological process. In: Recovery, Recycling and Re-integration (Eds Barrage, A. and Edelman, X.) EMPA Dübendorf, (Switzerland), 4,139–144.

    Google Scholar 

  7. Beffa, T., Lott Fischer, J., and Aragno, M. (1995). Industrial sources and dispersion in the air of fungal spores. Mycologia Helvetica (in press).

    Google Scholar 

  8. Beffa, T. (1993). Inhibitory action of elemental sulphur (Sº) on fungal spores. Can. J. Microbiol., 39, 731–735.

    Article  CAS  Google Scholar 

  9. Beffa, T., Berzcy, M. and Aragno, M. (1993). Elemental sulfur production during mixotrophic growth on hydrogen and thiosulfate of thermophilic hydrogen-oxidizing bacteria. Current Microbiol., 27, 349–353.

    Article  CAS  Google Scholar 

  10. Beffa, T., Berczy, M. and Aragno, M. (1991). Chemolithotrophic growth on elemental sulfur (Sº) and respiratory oxidation of Sº by Thiobacillus versutus and another sulfur-oxidizing bacterium. FEMS Microbiol. Lett., 84, 285–290.

    CAS  Google Scholar 

  11. Beffa, T., Berczy, M., and Aragno, M. (1991). Cytochromes and hydrogen-oxidizing activity in the thermophilic hydrogen-oxidizing bacteria related to the genus Hydrogenobacter. Arch. Microbiol., 156,497–500.

    CAS  Google Scholar 

  12. Biddlestone, A.J., Gray, K.R., and Day, C.A. (1987). Composting and straw decomposition. In: Environmental Biotechnology (Eds Forster, C.F., and Wase D.AJ.), Ellis Horwood Limited Publishers, Chichester, Engalnd, pp. 135–175.

    Google Scholar 

  13. Brock, T.D., and Freeze, H. (1969). Thermus aquatic us gen. n. and sp. n., non-sporulating extreme thermophile. J. Bact., 98, 289–297.

    Article  CAS  Google Scholar 

  14. De Bertoldi, M., Vallini, G., and Pera, A. (1983). The Biology of Compo sting: A Review. Waste Management and Research, 1, 167–176.

    Google Scholar 

  15. Diaz-Ravina, M., Acea, M.J., and Carballas, T. (1989). Microbiological characterization of four composted urban refuse. Biological wastes, 30, 89–100.

    Article  CAS  Google Scholar 

  16. Dick, W.A., and McCoy, E.L. (1993). Enhancing soil fertility by addition of compost. In: Science and Engineering of Composting ; design, environmental, microbiological and utilization aspects (Eds Hoitink, H.A.J., and Keener, H.M.), Renaissance Publications, Worthington, Ohio U.S.A., pp. 622–644.

    Google Scholar 

  17. Fergus, C.L. (1964). Thermophilic and thermotolerant molds and actinomycetes of mushroom compost during peak heating. Mycologia, 56, 267–284.

    Article  Google Scholar 

  18. Finstein, M.S., and Morris, M.L. (1975) Microbiology of municipal solid waste composting. Adv. Appl. Microbiol., 19, 113–151.

    Article  CAS  Google Scholar 

  19. Fogarty, A.M., and Tuovinen O.H. (1991) Microbiological degradation of pesticides in yard waste composting. Microbiol. Rev., 55, 225–233.

    CAS  Google Scholar 

  20. Fujio, Y. and Kume, S. J. (1991). Isolation and identification of thermophilic bacteria from sewage sludge compost. J. Ferment. Bioeng., 72, 334–337.

    Article  Google Scholar 

  21. Hoitink, H.AJ., and Grebus, M.E. (1994). Status of biological control of plant diseases with composts. Compost Science & Utilization, 2, 6–13.

    Google Scholar 

  22. Inbar, Y., Chen, Y., Hadar, Y., and Hoitink, H.AJ. (1990). New approaches to compost maturity. BioCycle, 31, 64–69.

    CAS  Google Scholar 

  23. Jones, D., and Keddie, R.M. (1991). The Genus Arthrobacter. In: The Procaryotes (Eds. Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H.), 2nd ed., Springer-Verlag, New York), pp. 3917–3933.

    Google Scholar 

  24. Lott Fischer, J., Beffa, T., Blanc, M., Lyon, P-F., and Aragno, M. (1995). Developmenet of Aspergillus fumigatus during composting of organic wastes. In: Recovery, Recycling and Reintegration (Eds Barrage, A., and Edelman, X.), EMPA Dübendorf (Switzerland), pp. 239–244.

    Google Scholar 

  25. McKinley, V.L. and Vestal, J.R. (1984). Biokinetic analyses of adaptation and succession: microbial activity in composting municipal sewage sludge. Appl. Environ. Microbiol. 47, 933–941.

    CAS  Google Scholar 

  26. Millner, P.D., Olenchock, S.A., Epstein, E., Rylander, R., Haines, M.DJ., Walker, J., Ooi, B.L., Home, E., and Maritato, M (1994). Bioaerosols associated with composting facilities. Compost Science and Utilization, 2: 6–57.

    Google Scholar 

  27. Nakasaki, K. Sasaki, M. Shoda, M. and Kubota, H. (1985). Change in microbial numbers during thermophilic composting sewage sludge with reference to CO2 evolution rate. Appl. Environ. Microbiol., 49,37–41.

    CAS  Google Scholar 

  28. Nakasaki, K., Shoda, M. and Kubota, H. (1985). Effect of temperature on composting of sewage sludge. Appl. Environ. Microbiol. 50, 1526–1530.

    CAS  Google Scholar 

  29. Schulze, K.L. (1962). Continuous thermophilic composting. Appl. Microbiol, 1 10, 108–122.

    Google Scholar 

  30. Sharp, R.I., Riley, P.W. and White, O. (1991). Heterotrophic thermophilic Bacilli. In: Thermophilic Bacteria (Ed. Kristjansson, J.K.), CRC Press Inc., Boca Raton U.S.A., pp. 19–50

    Google Scholar 

  31. Strom, P.E (1985). Effect of temperature on bacterial species diversity in thermophilic solidwaste composting. Appl. Environ. Microbial., 50. 899–905.

    CAS  Google Scholar 

  32. Strom, P.E (1985). Identification of them10philic bacteria in solid waste composting. Applied Environ. Microbiol. 50, 906–913.

    CAS  Google Scholar 

  33. Suler, D.J., and Finstein, M.S. (1977). Effect of temperature, aeration, and moisture on CO2 formation in bench-scale, continuously thermophilic composting of solid waste. Appl. Environ. Microbiol., 33, 345–350.

    CAS  Google Scholar 

  34. Waksmann, S.A., Cordon, T.C., and Hulpoi, N. (1939). Influence of temperature upon the microbiological population and decomposition processes in composts of stable manure. Soil Sci. 47. 83–114.

    Article  Google Scholar 

  35. Williams, R.A.O. and Da Costa, M.S. (1991). The genus Thermus and related microorganisms. In: Thermophilic Bacteria (Ed. Kristjansson, J.K.), CRC Press Inc. Boca Raton U.S.A., pp. 51–62.

    Google Scholar 

  36. Zucconi, F. Forte, M. Monaco, A. and de Bertoldi, M. (1981). Biological evaluation of compost maturity. BioCycle. 22. 54–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marco de Bertoldi Paolo Sequi Bert Lemmes Tiziano Papi

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beffa, T., Blanc, M., Marilley, L., Fischer, J.L., Lyon, PF., Aragno, M. (1996). Taxonomic and Metabolic Microbial Diversity During Composting. In: de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T. (eds) The Science of Composting. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1569-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1569-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7201-4

  • Online ISBN: 978-94-009-1569-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics