Skip to main content

Metabolism of nitrogen-containing compounds

  • Chapter
The Rumen Microbial Ecosystem

Abstract

The way in which the rumen has evolved as their first digestive organ potentially affords ruminants an efficiency of protein nutrition that is not available to non-ruminant herbivores. Protein is synthesized in the gut in the form of rumen microorganisms. The necessary energy is derived from plant polysaccharides such as cellulose, and the nitrogen is derived from ammonia and amino acids in the rumen. The energy and nitrogen sources can therefore be substrates of little value to most non-ruminants. Even more important, however, is the direct availability of that microbial protein for digestion and absorption by the host animal. Herbivores which employ hind-gut fermentation can only achieve the same efficiency of microbial protein utilization by coprophagy. In contrast, microbial protein is generally the ruminant’s principal source of amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou Akkada, A. R. (1965). The metabolism of ciliate protozoa in relation to rumen function. In Physiology of Digestion in the Ruminant, ed. A. T. Phillipson. Price Press, Newcastle upon Tyne, pp. 335–45.

    Google Scholar 

  • Abou Akkada, A. R. and Blackburn, T. H. (1963). Some observations on the nitrogen metabolism of rumen proteolytic bacteria. J. Gen. Microbiol., 31, 461–9.

    PubMed  CAS  Google Scholar 

  • Abou Akkada, A. R. and Howard, B. H. (1962). The biochemistry of rumen protozoa 5. The nitrogen metabolism of Entodinium. Biochem. J., 82, 313–20.

    PubMed  CAS  Google Scholar 

  • Allison, M. J. (1965). Phenylalanine biosynthesis from phenylacetic acid by anaerobic bacteria from the rumen. Biochem. Biophys. Res. Commun. 18, 30–5.

    Article  PubMed  CAS  Google Scholar 

  • Allison, M. J. (1969). Biosynthesis of amino acids by ruminal microorganisms. J. Anim. Sci., 29, 797–807.

    PubMed  CAS  Google Scholar 

  • Allison, M. J. (1970). Nitrogen metabolism of ruminal micro-organisms. In Physiology of Digestion and Metabolism in the Ruminant, ed. A. T. Phillipson. Oriel Press Ltd, Newcastle, pp. 456–73.

    Google Scholar 

  • Allison, M. J. (1978). Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl. Environ. Microbiol., 35, 872–7.

    PubMed  CAS  Google Scholar 

  • Allison, M. J. and Bryant, M. P. (1963). Biosynthesis of branched-chain amino acids from branched-chain fatty acids by rumen bacteria. Arch. Biochem. Biophys., 101, 269–77.

    Article  PubMed  CAS  Google Scholar 

  • Allison, M. J. and Peel, J. L. (1971). The synthesis of valine from isobutyrate by Peptostreptococcus elsdenii and Bacteroides ruminicola. Biochem. J., 121., 431–7.

    PubMed  CAS  Google Scholar 

  • Allison, M. J. and Robinson, I. M. (1967). Tryptophan biosynthesis from indole-3-acetic acid by anaerobic bacteria from the rumen. Biochem. J., 102., 36P.

    Google Scholar 

  • Allison, M. J. and Robinson, I. M. (1970). Biosynthesis of α-ketoglutarate by the reductive carboxylation of succinate in Bacteroides ruminicola. J. Bacteriol., 104., 50–6.

    PubMed  CAS  Google Scholar 

  • Allison, M. J., Robinson, I. M. and Baetz, A. L. (1979). Synthesis of α-ketoglutarate by reductive carboxylation of succinate in Veillonella, Selenomonas and Bacteroides. J. Bacteriol.., 140., 980–6.

    PubMed  CAS  Google Scholar 

  • Allison, M. J., Baetz, A. L. and Wiegel, J. (1984). Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis. Appl. Environ. Microbiol., 48., 1111–17.

    PubMed  CAS  Google Scholar 

  • Allison, M. J., Mayberry, W. R., McSweeney, C. S. and Stahl, D. A. (1992). Synergistes jonesii, gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. System. Appl. Microbiol., 15., 522–9.

    CAS  Google Scholar 

  • Al-Rabbat, M. F., Baldwin, R. L. and Weir, W. C. (1971a). Microbial growth dependence on ammonia nitrogen in the bovine rumen: a quantitative study. J. Dairy Sci., 54., 1162–72.

    Article  CAS  Google Scholar 

  • Al-Rabbat, M. F., Baldwin, R. L. and Weir, W. C. (1971b). In vitro 15 nitrogen-tracer technique for some kinetic measurements of ruminal ammonia. J. Dairy Sci., 54., 1150–61.

    Article  CAS  Google Scholar 

  • Appleby, J. C. (1955). The isolation and classification of proteolytic bacteria from the rumen of sheep. J. Gen. Microbiol. 12., 526–33.

    PubMed  CAS  Google Scholar 

  • Argyle, J. L. and Baldwin, R. L. (1989). Effects of amino acids and peptides on rumen microbial growth yields. J. Dairy Sci., 72., 2017–27.

    Article  PubMed  CAS  Google Scholar 

  • Armstead, I. P. and Ling, J. R. (1993). Variations in the uptake and metabolism of peptides and amino acids by mixed ruminal bacteria in vitro. Appl. Environ. Microbiol., 59, 3360–6.

    PubMed  CAS  Google Scholar 

  • Asao, N., Ushida, K. and Kojima, Y. (1993). Proteolytic activity of rumen fungi belonging to the genera Neocallimastix and Piromyces. Lett. Appl. Microbiol., 16., 247–50.

    Article  CAS  Google Scholar 

  • Ashes, J. R., Mangan, J. L. and Sidhu, G. S. (1984). Nutritional availability of amino acids from protein cross-linked to protect against degradation in the rumen. Br. J. Nutr., 52., 239–47.

    Article  PubMed  CAS  Google Scholar 

  • Attwood, G. T. and Reilly, K. (1995). Identification of proteolytic rumen bacteria isolated from New Zealand cattle. J. Appl. Bacteriol., 79., 22–9.

    PubMed  CAS  Google Scholar 

  • Barker, H. A. (1981). Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem., 50, 23–40.

    Article  PubMed  CAS  Google Scholar 

  • Bhatia, S. K., Pradham, K. and Singh, R. (1979). Microbial transaminase activities and their relationship with bovine rumen metabolites. J. Dairy Sci., 62., 441–6.

    Article  PubMed  CAS  Google Scholar 

  • Bhatia, S. K., Pradham, K. and Singh, R. (1980). Ammonia anabolizing enzymes in cattle and buffalo fed varied nonprotein nitrogen and carbohydrates. J. Dairy Sci., 63, 1104–8.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, T. H. (1965). Nitrogen metabolism in the rumen. In Physiology of Digestion in the Ruminant, ed. R. W. Dougherty, R. S. Allen, W. Burroughs et al. Butterworths, London, pp. 322–34.

    Google Scholar 

  • Blackburn, T. H. (1968a). Protease production by Bacteroides amylophilus strain H18. J. Gen. Microbiol., 53, 27–36.

    CAS  Google Scholar 

  • Blackburn, T. H. (1968b). The protease liberated from Bacteroides amylophilus strain HI8 by mechanised disintegration. J. Gen. Microbiol., 53., 37–51.

    PubMed  CAS  Google Scholar 

  • Blackburn, T. H. and Hobson, P. N. (I960b). Isolation of proteolytic bacteria from the sheep rumen. J. Gen. Microbiol., 22., 282–9.

    PubMed  CAS  Google Scholar 

  • Blackburn, T. H. and Hobson, P. N. (1960b). Proteolysis in the sheep rumen by whole and fractionated rumen contents. J. Gen. Microbiol., 22., 272–81.

    PubMed  CAS  Google Scholar 

  • Blackburn, T. H. and Hobson, P. N. (1962). Further studies on the isolation of proteolytic bacteria from the sheep rumen. J. Gen. Microbiol., 29., 69–81.

    PubMed  CAS  Google Scholar 

  • Blackburn, T. H. and Hullah, W. A. (1974). The cell-bound protease of Bacteroides amylophilus HI8. Can. J. Microbiol., 20., 435–41.

    Article  PubMed  CAS  Google Scholar 

  • Bladen, H. A., Bryant, M. D. and Doetsch, R. N. (1961). A study of bacterial species from the rumen which produce ammonia from protein hydrolyzate. Appl. Microbiol., 9., 175–80.

    PubMed  CAS  Google Scholar 

  • Blake, J. S., Salter, D. N. and Smith, R. H. (1983). Incorporation of nitrogen into rumen bacterial fractions of steers given protein- and urea-containing diets. Ammonia assimilation into intracellular bacterial amino acids. Br. J. Nutr.., 50., 769–82.

    Article  PubMed  CAS  Google Scholar 

  • Bonnemoy, F., Fonty, G., Michel, V. and Gouet, P. (1993). Effect of anaerobic fungi on the rumen proteolysis in gnotobiotic lambs. Repr. Nutr. Dev., 33, 551–5.

    Article  CAS  Google Scholar 

  • Brent, B. E., Adepoju, A. and Portela, F. (1971). In vitro inhibition of rumen urease with acetohydroxaminic acid. J. Anim. Sci., 32, 794–8.

    PubMed  CAS  Google Scholar 

  • Briggs, M. H. (1967). Urea as a Protein Supplement. Pergamon, London.

    Google Scholar 

  • Broad, T. E. and Dawson, R. M. C. (1976). Role of choline in the nutrition of the rumen protozoon Entodinium Caudatum. J. Gen. Microbiol., 92., 391–7.

    PubMed  CAS  Google Scholar 

  • Brock, F. M., Forsberg, C. W. and Buchanan-Smith, J. G. (1982). Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl Environ. Microbiol., 44, 561–9.

    PubMed  CAS  Google Scholar 

  • Broderick, G. A. and Balthrop, J. E. (1979). Chemical inhibition of amino acid deamination by ruminal microbes in vitro. J. Anim. Sci., 49, 1101–11.

    CAS  Google Scholar 

  • Broderick, G. A. and Wallace, R. J. (1988). Effects of dietary nitrogen source on concentrations of ammonia, free amino acids and fluroescamine-reactive peptides in the sheep rumen. J. Anim. Sci., 66, 2233–8.

    CAS  Google Scholar 

  • Broderick, G. A., Wallace, R. J. and McKain, N. (1988). Uptake of small neutral peptides by mixed rumen microorganisms in vitro. J. Sci. Food Agric., 42, 109–18.

    Article  CAS  Google Scholar 

  • Brown, C. M., Macdonald-Brown, D. S. and Meers, J. L. (1974). Physiological aspects of microbial inorganic nitrogen metabolism. Adv. Microb. Physiol., 11, 1–52.

    Article  Google Scholar 

  • Bryant, M. P. (1974). Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract. Am. J. Clin. Nutr., 27, 1313–19.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. and Robinson, I. M. (1962). Some nutritional characteristics of predominant cultivable ruminal bacteria. J. Bacteriol., 84, 605–14.

    PubMed  CAS  Google Scholar 

  • Burchall, J. J., Niederman, R. A. and Wolin, M. J. (1964). Amino group formation and glutamate synthesis in Streptococcus bovis. J. Bacteriol., 88, 1038–44.

    PubMed  CAS  Google Scholar 

  • Bygrave, F. L. and Dawson, R. M. C. (1976). Phosphatidylcholine biosynthesis and choline transport in the anaerobic protozoan Entodinium Caudatum. Biochem. J., 160, 481–90.

    PubMed  CAS  Google Scholar 

  • Carlson, J. R., Dickinson, E. O., Yokoyama, M. T. and Bradley, B. (1975). Pulmonary edema and emphysema in cattle after intraruminal and intravenous administration of 3-methylindole. Am. J. Vet. Res., 36, 1341.

    PubMed  CAS  Google Scholar 

  • Chalmers, M. I. and Synge, R. L. M. (1954). The digestion of nitrogenous compounds in ruminants. Adv. Protein Chem., 9, 93–120.

    Article  PubMed  CAS  Google Scholar 

  • Chalupa, W. (1972). Metabolic aspects of non-protein nitrogen utilization in ruminant animals. Fed. Proc., 31, 1152–64.

    PubMed  CAS  Google Scholar 

  • Chalupa, W. (1976). Degradation of amino acids by the mixed rumen microbial population. J. Anim. Sci., 43, 828–34.

    PubMed  CAS  Google Scholar 

  • Chalupa, W. (1977). Manipulating rumen fermentation. J. Anim. Sci., 45, 585–99.

    CAS  Google Scholar 

  • Chalupa, W. (1980). Chemical control of rumen microbial metabolism. In Digestive Physiology and Metabolism in Ruminants, ed. Y. Ruckebusch and P. Thivend. MTP Press, Lancaster, pp. 325–47.

    Google Scholar 

  • Chalupa, W., Clark, J., Opliger, P. and Lavker, R. (1970). Ammonia metabolism in rumen bacteria and mucosa from sheep fed soy protein or urea. J. Nutr., 100, 161–9.

    PubMed  CAS  Google Scholar 

  • Chalupa, W., Patterson, J. A., Chow, A. W. and Parish, R. C. (1976). Deaminase inhibitor effects on N-utilization. J. Anim. Sci., 43, 316.

    Google Scholar 

  • Chen, G. and Russell, J. B. (1988). Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus. Appl. Environ. Microbiol., 54, 2742–9.

    PubMed  CAS  Google Scholar 

  • Chen, G. and Russell, J. B. (1989). More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl. Environ. Microbiol., 55, 1052–7.

    PubMed  CAS  Google Scholar 

  • Chen, G., Strobel, H. J., Russell, J. B. and Sniffen, C. J. (1987a). Effect of hydrophobicity on utilization of peptides by ruminal bacteria in vitro. Appl. Environ. Microbiol., 53, 2021–5.

    PubMed  CAS  Google Scholar 

  • Chen, G., Sniffen, C. J. and Russell, J. B. (1987b). Concentration and estimated flow of peptides from the rumen of dairy cattle: effects of protein quantity, protein solubility and feeding frequency. J. Dairy Sci., 70, 983–92.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, K.-J. and Costerton, J. W. (1980). Adherent rumen bacteria — their role in the digestion of plant material, urea and epithelial cells. In Digestive Physiology and Metabolism in Ruminants, ed. Y. Ruckebusch and P. Thivend. MTP Press, Lancaster, pp. 227–50.

    Google Scholar 

  • Cheng, K.-J. and Wallace, R. J. (1979). The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flux. Br. J. Nutr., 42, 553–7.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, K.-J., McCowan, R. P. and Costerton, J. W. (1979). Adherent epithelial bacteria in ruminants and their roles in digestive tract function. Am. J. Clin. Nutr., 32, 139–48.

    PubMed  CAS  Google Scholar 

  • Chikunya, S., Newbold, C. J., Rode, L. et al. (1996). Influence of dietary rumen-degradable protein on bacterial growth in the rumen of sheep receiving different energy sources. Anim. Feed Sci. Teehnol., 63, 333–40.

    Article  CAS  Google Scholar 

  • Coelho da Silva, J. F., Seeley, R. C., Beever, D. E. et al. (1972). The effect in sheep of physical form and stage of growth on the sites of digestion of a dried grass diet. Br. J. Nutr., 28, 357–71.

    Article  Google Scholar 

  • Coleman, G. S. (1967). The metabolism of free amino acids by washed suspensions of the rumen ciliate Entodinium caudatum. J. Gen. Microbiol., 47, 433–47.

    PubMed  CAS  Google Scholar 

  • Coleman, G. S. (1968). The metabolism of bacterial nucleic acid and of free components of nucleic acid by the rumen ciliate Entodinium caudatum. J. Gen. Microbiol., 54, 83–96.

    PubMed  CAS  Google Scholar 

  • Coleman, G. S. (1980). Rumen ciliate protozoa. In Advances in Parasitology, Vol. 18, ed. W. H. R. Lumsden, R. Muller and J. R. Baker. Academic Press, London, pp. 121–73.

    Google Scholar 

  • Coleman, G. S. (1983). Hydrolysis of fraction 1 leaf protein and caScin by rumen entodiniomorphid protozoa. J. Appl. Bacteriol., 55, 111–18.

    CAS  Google Scholar 

  • Coleman, G. S. and Laurie, J. I. (1974). The metabolism of starch, glucose, amino acids, purines, pyrimidines and bacteria by three Epidinium spp. isolated from the rumen. J. Gen. Microbiol., 85, 244–56.

    PubMed  CAS  Google Scholar 

  • Coleman, G. S. and Laurie, J. I. (1977). The metabolism of starch, glucose, amino acids, purines, pyrimidines and bacteria by the rumen ciliate Polyplastron multivesiculatum. J. Gen. Microbiol., 98, 29–37.

    PubMed  CAS  Google Scholar 

  • Coleman, G. S. and Reynolds, D. J. (1982). The uptake of bacteria and amino acids by Ophryoscolex caudatus, Diploplastron affine and some other rumen entodiniomorphid protozoa. J. Appl. Bacteriol., 52, 135–44.

    Google Scholar 

  • Coleman, G. S. and Sandford, D. C. (1979a). The engulfment and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen ciliate protozoa. J. Agric. Sci. Camb., 92, 729–42.

    Article  Google Scholar 

  • Coleman, G. S. and Sandford, D. C. (1979b). The uptake and utilization of bacteria, amino acids and nucleic acid components by the rumen ciliate Eudoplodinium maggii. J. Appl. Bacteriol., 47, 409–19.

    CAS  Google Scholar 

  • Cook, A. R. (1976). Urease activity in the rumen of sheep and the isolation of ureolytic bacteria. J. Gen. Microbiol., 92, 32–48.

    PubMed  CAS  Google Scholar 

  • Cooper, P. B. and Ling, J. R. (1985). The uptake of peptides and amino acids by rumen bacteria. Proc. Nutr. Soc., 44, 144A.

    Google Scholar 

  • Cotta, M. A. (1990). Utilization of nucleic acids by Selenomonas ruminantium and other ruminal bacteria. Appl. Environ. Microbiol., 56, 3867–70.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A. and Hespell, R. B. (1986a). Protein and amino acid metabolism of rumen bacteria. In Control of Digestion and Metabolism in Ruminants, ed. L. P. Milligan, W. L. Grovum and A. Dobson. Prentice-Hall, Englewood Cliffs, New Jersey, pp. 122–36.

    Google Scholar 

  • Cotta, M. A. and Hespell, R. B. (1986b). Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl. Environ. Microbiol., 52, 51–8.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A. and Russell, J. B. (1982). Effect of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continuous culture. J. Dairy Sci., 65, 226–34.

    Article  CAS  Google Scholar 

  • Cottle, D. J. and Velle, W. (1989). Degradation and outflow of amino acids from the rumen of sheep. Br. J. Nutr., 61, 397–408.

    Article  PubMed  CAS  Google Scholar 

  • Cruz Soto, R., Muhammed, S. A., Newbold, C. J. et al. (1994). Influence of peptides, amino acids and urea on microbial activity in the rumen of sheep receiving grass hay and on the growth of rumen bacteria in vitro. Anim. Feed Sci. Teehnol., 49, 151–61.

    Article  Google Scholar 

  • Czerkawski, J. W. and Breckenridge, G. (1982). Distribution and changes in urease (EC 3.5.1.5) activity in Rumen Simulation Technique (Rusilec). Br. J. Nutr., 47, 331–48.

    Article  PubMed  CAS  Google Scholar 

  • Dehority, B. A., Scott, H. W. and Kavaluk, P. (1967). Volatile fatty acid requirements of cellulolytic rumen bacteria. J. Bacteriol., 94, 537–43.

    PubMed  CAS  Google Scholar 

  • Depardon, N., Debroas, D. and Blanchart, G. (1995). Breakdown of peptides from a soya protein hydrolysate by rumen bacteria. Simultaneous study of enzyme activities and of two physico-chemical parameters: molecular weight and hydrophobicity. J. Sci. Food Agric., 68, 25–31.

    Article  CAS  Google Scholar 

  • Dinsdale, D., Cheng, K.-J., Wallace, R. J. and Goodlad, R. A. (1980). Digestion of epithelial tissue of the rumen wall by adherent bacteria in infused and conventionally fed sheep. Appl. Environ. Microbiol. 39, 1059–66.

    PubMed  CAS  Google Scholar 

  • Duncan, P. A., White, B. A. and Mackie, R. I. (1992). Purification and properties of NADP – dependent glutamate dehydrogenase from Ruminococcus flavefaciens FD-1. Appl. Environ. Microbiol., 58, 4032–7.

    PubMed  CAS  Google Scholar 

  • Eadie, J. M. and Gill, J. C. (1971). The effects of the absence of rumen ciliate protozoa on growing lambs fed a roughage-concentrate diet. Br. J. Nutr., 26, 155–67.

    Article  PubMed  CAS  Google Scholar 

  • Erfle, J. D., Sauer, F. D. and Mahadevan, S. (1977). Effect of ammonia concentration on activity of enzymes of ammonia assimilation and on synthesis of amino acids by mixed rumen bacteria in continuous culture. J. Dairy Sci., 60, 1064–72.

    Article  PubMed  CAS  Google Scholar 

  • Flint, H. J. and Thomson, A. M. (1990). Deoxyribonuclease activity in rumen bacteria. Lett. Appl. Microbiol., 11, 18–21.

    Article  PubMed  CAS  Google Scholar 

  • Forsberg, C. W., Lovelock, L. K. A., Krumholz, L. and Buchanan-Smith, J. G. (1984). Protease activities of rumen protozoa. Appl. Environ. Microbiol., 47, 101–10.

    PubMed  CAS  Google Scholar 

  • Friedman, M. and Broderick, G. A. (1977). Protected proteins in ruminant nutrition. In Protein Crosslinking: Nutritional and Medical Consequences, ed. M. Friedman. Plenum Press, New York, pp. 545–58.

    Google Scholar 

  • Fulghum, R. S. and Moore, W. E. C. (1963). Isolation, enumeration, and characteristics of proteolytic ruminal bacteria. J. Bacteriol., 85, 808–15.

    PubMed  CAS  Google Scholar 

  • Ganev, G., Ă˜rskov, E. R. and Smart, R. (1979). The effect of roughage or concentrate feeding and rumen retention time on total degradation of protein in the rumen. J. Agric. Sci., Camb., 93, 651–6.

    Article  CAS  Google Scholar 

  • Gibbons, R. J. and Doetsch, R. N. (1959). Physiological study of an obligately anaerobic ureolytic bacterium. J. Bacteriol. 77, 417–28.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, R. J. and McCarthy, R. D. (1957). Obligately anaerobic urea-hydrolyzing bacteria in the bovine rumen. In Univ. Maryland Agric. Exp. Stn. Misc. Publ., 291, 12–16.

    Google Scholar 

  • Goodman, H. J. K. and Woods, D. R. (1993). Cloning and nucleotide sequence of the Butyrivibrio fibrisolvens gene encoding a type III glutamine synthetase. J. Gen. Microbiol., 139, 1487–93.

    PubMed  CAS  Google Scholar 

  • Griffith, C. J. and Carlsson, J. (1974). Mechanism of ammonia assimilation in Streptococci. J. Gen. Microbiol., 82, 253–60.

    PubMed  CAS  Google Scholar 

  • Hammond, A. C., Carlson, J. R. and Breeze, R. G. (1978). Monensin and the prevention of tryptophan-induced acute bovine pulmonary edema and emphysema. Science., 201, 153–5.

    Article  PubMed  CAS  Google Scholar 

  • Harmeyer, J. (1965). Fixation of carbon dioxide in amino acids by isolated rumen protozoa (Isotricha prostoma and I. intestinalis). Zentralb. Veterinar., 12, 10–17.

    CAS  Google Scholar 

  • Harmeyer, J. (1971). Der Aminosaurenstoffwechsel isolierter Pansenprotozoenarten (Isotricha prostoma and I. intestinalis) 2. Mitteilung. Exkretion von Aminosauren Z. Tierphysiol. Tierernahr. Futtermittelk., 28, 75–85.

    Article  CAS  Google Scholar 

  • Harwood, C. S. and Canale-Parola, E. (1981). Adenosine 5’-triphosphate-yielding pathways of branched-chain amino acid fermentation by marine spirochete. J. Bacteriol., 148, 117–23.

    PubMed  CAS  Google Scholar 

  • Hausinger, R. P. (1986). Purification of a nickel-containing urease from the rumen anaerobe Selenomonas ruminantium. J. Biol. Chem., 261, 7866–70.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. P. and Edwards, R. (1981). Proteolytic activities of a rumen bacterium, Bacteroides ruminicola R8/4. J. Gen Microbiol., 125, 11–15.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. P. and Nugent, J. H. A. (1978). Leaf fraction 1 protein as a nitrogen source for the growth of a proteolytic rumen bacterium. J. Gen Microbiol., 106, 369–71 (Abstract).

    CAS  Google Scholar 

  • Hazlewood, G. P., Jones, G. A. and Mangan, J. L. (1981). Hydrolysis of leaf fraction 1 protein by the proteolytic rumen bacterium Bacteroides ruminicola R8/4.J. Gen Microbiol., 123, 223–32.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. P., Orpin, C. G., Greenwood, Y. and Black, M. E. (1983). Isolation of proteolytic rumen bacteria by use of selective medium containing leaf fraction 1 protein (ribulose bis phosphate carboxylase). Appl. Environ. Microbiol., 45, 1780–4.

    PubMed  CAS  Google Scholar 

  • Heald, P. J. and Oxford, A. E. (1953). Fermentation of soluble sugars by anaerobic holotrich ciliate protozoa of the genera Isotricha and Dasytricha. Biochem. J., 53, 506–12.

    PubMed  CAS  Google Scholar 

  • Henderickx, H. K. (1976). Quantitative aspects of the use of non-protein nitrogen in ruminant feeding. Cuban J. Agric. Sci., 10, 1–18.

    CAS  Google Scholar 

  • Henderickx, H. and Martin, J. (1963). In vitro study of the nitrogen metabolism in the rumen. CR Reck. Inst. Rech. Sci. Ind. Agr. Bruxelles., 31, 7–117.

    CAS  Google Scholar 

  • Henderson, C., Hobson, P. N. and Summers, R. (1969). The production of amylase, protease and lipolytic enzymes by two species of anaerobic rumen bacteria. In Continuous Culture of Microorganisms, ed. I. MalĂ©k, K. Beran, Z. Fencl et al. Academia, Prague, pp. 189–204.

    Google Scholar 

  • Hespell, R. B. (1984). Influence of ammonia assimilation pathways and survival strategy on ruminal microbial growth. In Herbivore Nutrition in the Subtropics and Tropics, ed. F. M. C. Gilchrist and R. I. Mackie. Science Press, South Africa, pp. 346–58.

    Google Scholar 

  • Hino, T. and Russell, J. B. (1985). Effect of reducing-equivalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts. Appl. Environ. Microbiol., 50, 1368–74.

    PubMed  CAS  Google Scholar 

  • Hino, T. and Russell, J. B. (1987). Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro.J. Anim. Sci., 64, 261–70.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. and Wallace, R. J. (1982). Microbial ecology and activities in the rumen: part II. CRC Crit. Rev. Microbiol., 9, 253–320.

    Article  CAS  Google Scholar 

  • Hobson, P. N., McDougall, E. I. and Summers, R. (1968). The nitrogen sources of Bacteroides amylophilus. J. Gen. Microbiol., 50, i.

    Google Scholar 

  • Hobson, P. N., Summers, R., Postgate, J. R. and Ware, D. A. (1973). Nitrogen fixation in the rumen of a living sheep. J. Gen. Microbiol., 77, 225–6.

    PubMed  CAS  Google Scholar 

  • Holtenius, P. (1957). Nitrite poisoning in sheep, with special reference to the detoxification of nitrite in the rumen. Acta Agric. Scand., 7, 113–63.

    Article  CAS  Google Scholar 

  • Hoshino, S., Sarumaru, K. and Morimoto, K. (1966). Ammonia anabolism in ruminants. J. Dairy Sci., 49, 1523–8.

    Article  CAS  Google Scholar 

  • Hullah, W. A. and Blackburn, T. H. (1971). Uptake and incorporation of amino acids and peptides by Bacteroides amylophilus. Appl. Microbiol., 21, 187–91.

    CAS  Google Scholar 

  • Hungate, R. E. (1966). The Rumen and its Microbes. Academic Press, New York and London.

    Google Scholar 

  • Itabashi, H. and Kandatsu, M. (1978). Formation of methylamine by rumen microorganisms. Jap. J. Zootech. Sci., 49, 110–18.

    CAS  Google Scholar 

  • Jenkinson, H. F., Buttery, P. J. and Lewis, D. (1979). Assimilation of ammonia by Bacteroides amylophilus in chemostat cultures. J. Gen. Microbiol., 113, 305–13.

    CAS  Google Scholar 

  • John, A., Isaacson, H. R. and Bryant, M. P. (1974). Isolation and characteristics of a ureolytic strain of Selenomonas ruminantium. J. Dairy Sci., 57, 1003–14.

    Article  PubMed  CAS  Google Scholar 

  • Jones, G. A. (1967). Ureolytic rumen bacteria. In Urea as a Protein Supplement, ed. M. H. Briggs. Pergamon, London, pp. 111–24.

    Google Scholar 

  • Jones, G. A. (1968). Influence of acetohydroxamic acid on some activities in vitro of the mixed rumen biota. Can. J. Microbiol., 14, 409–16.

    Article  PubMed  CAS  Google Scholar 

  • Jones, G. A. (1972). Dissimilatory metabolism of nitrate by the rumen microbiota. Can. J. Microbiol., 18, 1783–7.

    Article  PubMed  CAS  Google Scholar 

  • Jones, G. A., MacLeod, R. A. and Blackwood, A. C. (1964). Ureolytic rumen bacteria: characteristics of the microflora from a urea-fed sheep. Can. J. Microbiol., 10, 371–8.

    Article  PubMed  CAS  Google Scholar 

  • Jones, K. and Thomas, J. G. (1974). Nitrogen fixation by rumen contents of sheep.J. Gen. Microbiol., 85, 97–101.

    PubMed  CAS  Google Scholar 

  • Joyner, A. E. and Baldwin, R. L. (1966). Enzymatic studies of pure cultures of rumen microorganisms. J. Bacteriol., 92, 1321–30.

    PubMed  CAS  Google Scholar 

  • Kaufmann, W. and Lupping, W. (1982). Protected proteins and protected amino acids for ruminants. In Protein Contribution of Feedstuffs for Ruminants, ed. E. L. Miller, I. H. Pike and A. J. H. Van Es. Butterworths, London, pp. 36–75.

    Google Scholar 

  • Kennedy, P. M. and Milligan, L. P. (1980). The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants: a review. Can. J. Anim. Sci., 60, 205–221.

    Article  CAS  Google Scholar 

  • Kleiner, D. and Fitzke, E. (1979). Evidence for ammonia translocation by Clostridium pasteurianum. Biochem. Biophys. Res. Commun., 86, 211–17.

    Article  PubMed  CAS  Google Scholar 

  • Kopecny, J. and Wallace, R. J. (1982). Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl. Environ. Microbiol., 43, 1026–33.

    PubMed  CAS  Google Scholar 

  • Krause, D. O. and Russell, J. B. (1996). An rRNA approach for assessing the role of obligate amino acid fermenting bacteria in ruminal amino acid deamination. Appl. Environ. Microbiol., 62, 815–21.

    PubMed  CAS  Google Scholar 

  • Leibholz, J. (1969). Effect of diet on the concentration of free amino acids, ammonia and urea in the rumen and blood plasma of the sheep. J. Anim. Sci., 29, 628–33.

    CAS  Google Scholar 

  • Lenartova, V., Holovska, K., Havassy, I. et al (1985). Ammonia-utilising enzymes of adherent bacteria in the sheep’s rumen. Physiol Bohemoslov., 34, 512–17.

    PubMed  CAS  Google Scholar 

  • Lesk, E. M. and Blackburn, T. H. (1971). Purification ofBacteroides amylophilus protease. J. Bacteriol., 106, 394–402.

    PubMed  CAS  Google Scholar 

  • Lewis, D. (1951). The metabolism of nitrate and nitrite in the sheep. Biochem. J., 48, 175–80.

    PubMed  CAS  Google Scholar 

  • Lewis, T. R. and Emery, R. S. (1962). Relative deamination rates of amino acids by rumen microorganisms. J. Dairy Sci., 45, 765–8.

    Article  CAS  Google Scholar 

  • Ling, J. R. and Armstead, I. P. (1995). The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria. J. Appl. Bacteriol., 78, 116–24.

    PubMed  CAS  Google Scholar 

  • Lockwood, B. C., Coombs, G. H. and Williams, A. G. (1988). Proteinase activity in rumen ciliate protozoa. J. Gen. Microbiol., 134, 2605–14.

    PubMed  CAS  Google Scholar 

  • Lowe, S. E., Theodorou, M. K., Trinci, A. P. J. and Hespell, R. B. (1985). Growth of anaerobic rumen fungi on defined and semi-defined media lacking rumen fluid. J. Gen. Microbiol., 131, 2225–9.

    Google Scholar 

  • Madeira, H. M. F. and Morrison, M. (1995). The dipeptidyl peptidase type I activity of Prevotella ruminicola B14 is calcium-dependent and sensitive to cysteine protease inhibitors. In Proceedings of the Beijerinck Centennial Symposium, pp. 412–13.

    Google Scholar 

  • Maeng, W. J. and Baldwin, R. L. (1976). Factors influencing rumen microbial growth rates and yields: effect of amino acid additions to a purified, diet with nitrogen from urea. J. Dairy Sci., 59, 648–55.

    Article  PubMed  CAS  Google Scholar 

  • Mah, R. A. and Hungate, R. E. (1965). Physiological studies on the rumen ciliate, Ophryoscolex purkynjei Stein. J. Protozool., 12, 131–6.

    PubMed  CAS  Google Scholar 

  • Mahadevan, S., Sauer, F. and Erfle, J. D. (1976). Studies on bovine rumen bacterial urease. J. Anim. Sci., 42, 745–53.

    PubMed  CAS  Google Scholar 

  • Mahadevan, S., Erfle, J. D. and Sauer, F. D. (1980). Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms. J. Anim. Sci., 50, 723–8.

    PubMed  CAS  Google Scholar 

  • Makkar, H. P. S., Sharma, O. P., Dawra, R. K. and Negi, S. S. (1981). Effect of acetohydroxamic acid on rumen urease activity in vitro. J. Dairy Sci., 64, 643–8.

    Article  PubMed  CAS  Google Scholar 

  • Mangan, J. L. and West, J. (1977). Ruminal digestion of chloroplasts and the protection of protein by glutaraldehyde treatment. J. Agric. Sci., Camb., 89, 3–15.

    Article  Google Scholar 

  • Masson, H. A. and Ling, J. R. (1986). The in vitro metabolism of free and bacterially-bound 2,2′-diaminopimelic acid by rumen microorganisms. J. Appl Bacteriol., 60, 341–9.

    CAS  Google Scholar 

  • Mathison, G. W. and Milligan, L. P. (1971). Nitrogen metabolism in sheep. Br. J. Nutr., 25, 351–66.

    Article  PubMed  CAS  Google Scholar 

  • McAllan, A. B. and Smith, R. H. (1973a). Degradation of nucleic acids in the rumen. Br. J. Nutr., 29, 331–45.

    Article  PubMed  CAS  Google Scholar 

  • McAllan, A. B. and Smith, R. H. (1973b). Degradation of nucleic acid derivatives by rumen bacteria in vitro. Br. J. Nutr., 29, 467–74.

    Article  PubMed  CAS  Google Scholar 

  • McKain, N., Wallace, R. J. and Watt, N. D. (1992). Selective isolation of bacteria with dipeptidyl aminopeptidase type I activity from the sheep rumen. FEMS Microbiol Lett., 95, 169–74.

    Article  CAS  Google Scholar 

  • McSweeney, C. S., Allison, M. J. and Mackie, R. I. (1993). Amino acid utilization by the ruminal bacterium Synergistes jonesii. Arch. Microbiol., 159, 131–5.

    Article  Google Scholar 

  • Mehrez, A. Z., Ă˜rskov, E. R. and McDonald, I. (1977). Rates of rumen fermentation in relation to ammonia concentration. Br. J. Nutr., 38, 437–13.

    Article  PubMed  CAS  Google Scholar 

  • Merry, R. J., Smith, R. H. and McAllan, A. B. (1982). Glycosyl ureides in ruminant nutrition. Br. J. Nutr., 48, 287–318.

    Article  PubMed  CAS  Google Scholar 

  • Michel, V., Fonty, G., Millet, L.et al (1993). In vitro study of the proteolytic activity of rumen anaerobic fungi. FEMS Microbiol Lett., 110, 5–10.

    Article  PubMed  CAS  Google Scholar 

  • Milligan, L. P. (1970). Carbon dioxide fixing pathways of glutamic acid synthesis in the rumen. Can. J. Biochem., 48, 463–8.

    PubMed  CAS  Google Scholar 

  • Moisio, R., Kreula, M. and Vortanen, A. E. (1969). Experiments on nitrogen fixation in cow’s rumen.Suomen Kemistilehti B., 42, 432–3.

    CAS  Google Scholar 

  • Morgavi, D., Sakurada, M., Tomita, Y. and Onodera, R. (1994). Presence in rumen bacterial and protozoal populations of enzymes capable of degrading fungal cell walls.Microbiology, 140, 631–6.

    Article  PubMed  CAS  Google Scholar 

  • Naga, M. A. and El-Shazly, K. (1968). The metabolic characterization of the ciliate protozoon Eudiplodinium medium from the rumen of buffalo. J. Gen. Microbiol., 53, 305–15.

    PubMed  CAS  Google Scholar 

  • Nagasawa, T., Uchida, T. and Onodera, R. (1992). Exopeptidase activity of mixed rumen ciliate protozoa. Anim. Sci. Technol., 63, 481–7.

    CAS  Google Scholar 

  • Neill, A. R., Grime, D. W. and Dawson, R. M. C. (1978). Conversion of choline methyl groups through trimethylamine to methane in the rumen. Biochem. J., 170, 529–35.

    PubMed  CAS  Google Scholar 

  • Newbold, C. J., McKain, N. and Wallace, R. J. (1989). The role of protozoa in ruminal peptide metabolism. In Biochemistry and Molecular Biology of Anaerobic Protozoa, ed. D. Lloyd, G. H. Coombs and T. A. P. Paget. Harwood Academic Publishers, London, pp. 42–55.

    Google Scholar 

  • Newbold, C. J., Wallace, R. J. and McKain, N. (1990). Effect of the ionophore tetronasin, on nitrogen metabolism of rumen microorganisms in vitro. J. Anim. Sci., 68, 1103–9.

    PubMed  CAS  Google Scholar 

  • Newbold, C. J., Wallace, R. J. and Watt, N. D. (1992). Properties of ionophore-resistant Bacteroides ruminicola enriched by cultivation in the presence of tetronasin. J. Appl Bacteriol., 72, 65–70.

    PubMed  CAS  Google Scholar 

  • Nikolic, J. A. and Filipovic, R. (1981). Degradation of maize protein in rumen contents. Influence of ammonia concentration. Br. J. Nutr., 45, 111–16.

    Article  PubMed  CAS  Google Scholar 

  • Nikolic, J. A., Pavlicevic, A., Zeremski, D. and Negovanovic, D. (1980). Adaptation to diets containing significant amounts of non-protein nitrogen. In Physiology of Digestion and Metabolism in the Ruminant, ed. Y. Ruckebusch and P. Thivend. MTP Press Ltd, Lancaster, pp. 603–20.

    Google Scholar 

  • Nolan, J. V. (1975). Quantitative models of nitrogen metabolism in sheep. In Digestion and Metabolism in the Ruminants, ed. I. W. McDonald and A. C. I. Warner. University of New England Publishing Unit, Armidale, Australia, pp. 416–31.

    Google Scholar 

  • Nolan, J. V., Norton, B. W. and Leng, R. A. (1976). Further studies on the dynamics of nitrogen metabolism in sheep. Br. J. Nutr., 35, 127–47.

    Article  PubMed  CAS  Google Scholar 

  • Nugent, J. H. A. and Mangan, J. L. (1981). Characteristics of the rumen proteolysis of fraction I (18S) leaf protein from lucerne (Medicago sativa L). Br. J. Nutr., 46, 39–58.

    Article  PubMed  CAS  Google Scholar 

  • Nugent, J. H. A., Jones, W. T., Jordan, D. J. and Mangan, J. L. (1983). Rates of proteolysis in the rumen of the soluble proteins caScin, Fraction I (18S) leaf protein, bovine serum albumin and bovine submaxillary mucoprotein. Br. J. Nutr., 50, 357–68.

    Article  PubMed  CAS  Google Scholar 

  • Odle, J. and Schaefer, D. M. (1987). Influence of rumen ammonia concentration on the rumen degradation rates of barley and maize. Br. J. Nutr., 57, 127–38.

    Article  PubMed  CAS  Google Scholar 

  • Okuuchi, K., Nagasawa, T., Tomita, T. and Onodera, R. (1993). In vitro metabolism of tryptophan by rumen microorganisms: the interrelationship between mixed rumen protozoa and bacteria. Anim. Sci. Technol. (Jpn)., 64, 1079–86.

    Google Scholar 

  • Onodera, R. (1990). Amino acid and protein metabolism by rumen ciliate protozoa. In The Rumen Ecosystem. The Microbial Metabolism and its Regulation, ed. S. Hoshino, R. Onodera and H. Minato. Japan Scientific Societies Press/Springer-Verlag, Tokyo, pp. 33–42.

    Google Scholar 

  • Onodera, R. and Goto, Y. (1990). The metabolism of branched-chain amino acids by starved rumen protozoa. Jap. J. Zootech. Sci., 60, 843–9.

    Google Scholar 

  • Onodera, R. and Kandatsu, M. (1969). Occurrence of L-(−)-pipecolic acid in the culture medium of rumen ciliate protozoa. Agric. Biol. Chem., 33, 113–15.

    Article  CAS  Google Scholar 

  • Onodera, R. and Kandatsu, M. (1970). Amino acid and protein metabolism of rumen ciliate protozoa. IV. Metabolism of caScin. Jap. J. Zootech. Sci., 41, 307–13.

    CAS  Google Scholar 

  • Onodera, R. and Kandatsu, M. (1972). Conversion of lysine to pipecolic acid by rumen ciliate protozoa. Agric. Biol. Chem., 36, 1989–95.

    Article  CAS  Google Scholar 

  • Onodera, R. and Kandatsu, M. (1974). Formation of lysine from α,ε-diaminopimelic acid and negligible synthesis of lysine from some other precursors by rumen ciliate protozoa. Agric. Biol. Chem., 38, 913–20.

    Article  CAS  Google Scholar 

  • Onodera, R. and Migita, R. (1985). Metabolism of threonine, methionine and related compounds in mixed rumen ciliate protozoa. J. Protozool., 32, 326–30.

    CAS  Google Scholar 

  • Onodera, R. and Takashima, H. (1989). A possible transport system for 2.6-diaminopimelate and lysine production in rumen ciliate protozoa. Asian-Aust. J. Anim. Sci., 2, 449–51.

    Google Scholar 

  • Onodera, R. and Takei, K. (1986). Methionine sulfoxide in the incubation medium of mixed rumen ciliate protozoa. J. Agric. Biol. Chem., 50, 767–9.

    Article  CAS  Google Scholar 

  • Onodera, R. and Yakiyama, M. (1990). Coagulation and degradation of caScin by entodiniomorphid and holotrich rumen protozoa. Jap. J. Zootech. Sci., 61, 533–9.

    CAS  Google Scholar 

  • Onodera, R., Shinjo, T. and Kandatsu, M. (1974). Formation of lysine from α,ε-diaminopimelic acid contained in rumen bacterial cell walls by rumen ciliate protozoa. Agric. Biol. Chem., 38, 921–6.

    Article  CAS  Google Scholar 

  • Onodera, R., Nakagawa, Y. and Kandatsu, M. (1977). Ureolytic activity of the washed cell suspension of rumen ciliate protozoa. Agric. Biol. Chem., 41, 2177–82.

    Article  CAS  Google Scholar 

  • Onodera, R., Yamaguchi, Y. and Morimoto, S. (1983). Metabolism of arginine, citrulline, ornithine and proline by rumen ciliate protozoa. Agric. Biol. Chem., 47, 821–8.

    Article  CAS  Google Scholar 

  • Onodera, R., Ueda, H., Nagasawa, T. et al. (1992). In vitro metabolism of tryptophan by ruminal protozoa and bacteria: the production of indole and skatole and their effects on protozoal survival and VFA production. Anim. Sci. Technol. (Jpn)., 63, 23–31.

    CAS  Google Scholar 

  • Orpin, C. G. and Greenwood, Y. (1986). Nutritional and germination requirements of the rumen chytridiomycete Neocallimastix frontalis. Trans. Br. Mycol. Soc., 86, 103–9.

    Article  CAS  Google Scholar 

  • Ă˜rskov, E. R. (1982). Protein Nutrition in Ruminants. Academic Press, London.

    Google Scholar 

  • Ă˜rskov, E. R., Mills, C. F. and Robinson, J. J. (1980). The use of whole blood for the protection of organic materials from degradation in the rumen. Proc. Nutr. Soc., 39, 60A.

    Google Scholar 

  • Palmquist, D. L. and Baldwin, R. L. (1966). Enzymatic techniques for the study of pathways of carbohydrate utilization in the rumen. Appl. Microbiol., 14, 60–9.

    PubMed  CAS  Google Scholar 

  • Paster, B. J., Russell, J. B., Yang, C. M. J. et al. (1993). Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii and Clostridium aminophilum sp.nov. Int. J. Syst. Bacteriol., 43, 107–10.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, J. A. and Hespell, R. B. (1979). Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri. Curr. Microbiol., 3, 79–83.

    Article  CAS  Google Scholar 

  • Patterson, J. A. and Hespell, R. B. (1985). Glutamine synthetase activity in the ruminal bacterium Succinivibrio dextrinosolvens. Appl. Environ. Microbiol., 50, 1014–20.

    PubMed  CAS  Google Scholar 

  • Pettipher, G. L. and Latham, M. J. (1979). Production of enzymes degrading plant cell walls and fermentation of cellobiose by Ruminococcus flavefaciens in batch and continuous culture. J. Gen. Microbiol., 110, 29–38.

    CAS  Google Scholar 

  • Pilgrim, A. F., Gray, F. V., Weller, R. A. and Belling, G. B. (1970). Synthesis of microbial protein from ammonia in the sheep’s rumen and the proportion of dietary nitrogen converted into microbial N. Br. J. Nutr., 24, 589–98.

    Article  CAS  Google Scholar 

  • Pittman, K. A. and Bryant, M. P. (1964). Peptides and other nitrogen sources for growth of Bacteroides ruminicola. J. Bacteriol., 88, 401–10.

    PubMed  CAS  Google Scholar 

  • Pittman, K. A., Lakshmanan, S. and Bryant, M. P. (1967). Oligopeptide uptake by Bacteroides ruminicola. J. Bacteriol., 93, 1499–508.

    PubMed  CAS  Google Scholar 

  • Prins, R. A. (1977). Biochemical activities of gut microorganisms. In Microbial Ecology of the Gut, ed. R. T. J. Clarke and T. Bauchop. Academic Press, London, pp. 73–183.

    Google Scholar 

  • Prins, R. A., Van Gestel, J. C. and Counotte, G. H. M. (1979). Degradation of amino acids and peptides by mixed rumen microorganisms. Z. Tierphysiol. Tierernahr. Futtermittelk., 42, 333–9.

    Article  CAS  Google Scholar 

  • Prins, R. A., Van Rheenen, D. L. and Van’t Klooster, A. T. (1983). Characterisation of microbial proteolytic enzymes in the rumen. Ant. van Leeuw., 49, 585–95.

    Article  CAS  Google Scholar 

  • Pun, H. H. L. and Satter, L. D. (1975). Nitrogen fixation in ruminants. J. Anim. Sci., 41, 1161–3.

    Google Scholar 

  • Rasmussen, M. A. (1993). Isolation and characterization of Selenomonas ruminantium capable of 2-deoxyribose utilization. Appl. Environ. Microbiol., 39, 2077–81.

    Google Scholar 

  • Roffler, R. E. and Satter, L. D. (1975). Relationship between ruminal ammonia and nonprotein nitrogen utilization by ruminants. II Application of published evidence to the development of a theoretical model for predicting nonprotein nitrogen utilization. J. Dairy Sci., 58, 1889–98.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B. (1983). Fermentation of peptides by Bacteroides ruminicola B14. Appl. Environ. Microbiol., 45, 1566–74.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Baldwin, R. L. (1979). Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture. Appl. Environ. Microbiol., 37, 537–43.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Jeraci, J. L. (1984). Effect of carbon monoxide on fermentation of fiber, starch and amino acids by mixed rumen microorganisms in vitro. Appl. Environ. Microbiol., 48, 211–17.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Martin, S. A. (1984). Effects of various methane inhibitors on the fermentation of amino acids by mixed rumen microorganisms in vitro. J. Anim. Sci 59, 1329–38.

    CAS  Google Scholar 

  • Russell, J. B. and Robinson, P. H. (1984). Composition and characteristics of strains of Streptococcus bovis. J. Dairy Sci., 67, 1525–31.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B. and Strobel, H. J. (1987). Concentration of ammonia across cell membranes of mixed ruminal bacteria. J. Dairy Sci., 70, 970–6.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B., Bottje, W. G. and Cotta, M. A. (1981). Degradation of protein by mixed cultures of rumen bacteria: identification of Streptococcus bovis as an actively proteolytic rumen bacterium. J. Anim. Sci., 53, 242–52.

    PubMed  CAS  Google Scholar 

  • Russell, J. B., Sniffen, C. J. and Van Soest, P. J. (1983). Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria.J. Dairy Sci., 66, 763–75.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B., Strobel, H. J. and Chen, G. (1988). Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl. Environ. Microbiol., 54, 872–7.

    PubMed  CAS  Google Scholar 

  • Russell, J. B., Onodera, R. and Hino, T. (1991). Ruminal protein fermentation: new perspectives on previous contradictions. In Physiological Aspects of Digestion and Metabolism in Ruminants, ed. T. Tsuda, Y. Sasaki and R. Kawashima. Academic Press, Tokyo, pp. 681–97.

    Google Scholar 

  • Russell, J. B., O’Connor, J. D., Fox, D. G. et al. (1992). A net carbohydrate and protein system for evaluating cattle diets. 1. Ruminal fermentation. J. Anim. Sci., 70, 3551–61.

    PubMed  CAS  Google Scholar 

  • Sakurada, M., Morgavi, D. P., Tomita, Y. and Onodera, R. (1994). Ureolytic activity of anaerobic rumen fungi, Piromyces sp. OTS3 and Neocallimastix sp. OTS4.Anim. Sci. Technol. (Jpn)., 65, 950–5.

    Google Scholar 

  • Sauer, F. D., Erfle, J. D. and Mahadevan, S. (1975). Amino acid biosynthesis in mixed rumen cultures. Biochem. J., 150, 357–72.

    PubMed  CAS  Google Scholar 

  • Schaefer, D. M., Davis, C. L. and Bryant, M. P. (1980). Ammonia saturation constants for predominant species of rumen bacteria. J. Dairy Sci., 63, 1248–63.

    Article  PubMed  CAS  Google Scholar 

  • Scheifinger, C., Russell, N. and Chalupa, W. (1976). Degradation of amino acids by pure cultures of rumen bacteria. J. Anim. Sci., 43, 821–7.

    PubMed  CAS  Google Scholar 

  • Schwartz, H. M. (1967). The rumen metabolism of non-protein nitrogen. In Urea as a Protein Supplement, ed. M. H. Briggs. Pergamon, London, pp. 95–109.

    Google Scholar 

  • Shimbayashi, K., Obara, Y. and Yonemura, T. (1975). Pattern of free amino acids in rumen content and blood of sheep fed diet containing urea. Jap. J. Zootech. Sci., 46, 146–53.

    CAS  Google Scholar 

  • Siddons, R. C. and Paradine, J. (1981). Effect of diet on protein degrading activity in the sheep rumen. J. Sci. Fd Agric., 32, 973–81.

    Article  CAS  Google Scholar 

  • Sinclair, L. A., Garnsworthy, P. C., Newbold, J. R. and Buttery, P. J. (1995). Effects of synchronizing the rate of dietary energy and nitrogen release in diets with a similar carbohydrate composition on rumen fermentation and microbial protein synthesis. J. Agric. Sci., Camb., 124, 463–72.

    Article  CAS  Google Scholar 

  • Slyter, L. L., Oltjen, R. R., Kern, D. L. and Weaver, J. M. (1968). Microbial species including ureolytic bacteria from the rumen of cattle fed purified diets. J. Nutr., 94, 185–92.

    PubMed  CAS  Google Scholar 

  • Slyter, L. L., Satter, L. D. and Dinim, D. A. (1979). Effect of ruminal ammonia concentration on nitrogen utilisation by steers. J. Anim. Sci., 48, 906–12.

    CAS  Google Scholar 

  • Smith, C. J. and Bryant, M. P. (1979). Introduction to metabolic activities of intestinal bacteria. Am. J. Clin. Nutr., 32, 149–57.

    PubMed  CAS  Google Scholar 

  • Smith, C. J., Hespell, R. B. and Bryant, M. P. (1980). Ammonia assimilation and glutamate formation in the anaerobe Selenomonas ruminantium. J. Bacteriol., 141, 593–602.

    PubMed  CAS  Google Scholar 

  • Smith, C. J., Hespell, R. B. and Bryant, M. P. (1981) Regulation of urease and ammonia assimilatory enzymes in Selenomonas ruminantium. Appl. Environ. Microbiol., 42, 89–96.

    PubMed  CAS  Google Scholar 

  • Smith, R. H. and McAllan, A. B. (1970). Nucleic acid metabolism in the ruminant. 2. Formation of microbial nucleic acids in the rumen in relation to the digestion of food nitrogen, and the fate of dietary nucleic acids. Br. J. Nutr., 24, 545–56.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, H. J. (1968). Enzymatic studies on the biosynthesis of amino acids from lactate by Peptostreptococcus elsdenii. Biochem. J., 108, 107–19.

    PubMed  CAS  Google Scholar 

  • Somerville, H. J. and Peel, J. L. (1967). Tracer studies on the biosynthesis of amino acids from lactate by Peptostreptococcus elsdenii. Biochem. J., 105, 299–310.

    PubMed  CAS  Google Scholar 

  • Spears, J. W. and Hatfield, E. E. (1978). Nickel for ruminants I. Influence of dietary nickel on ruminal urease activity. J. Anim. Sci., 47, 1345–50.

    PubMed  CAS  Google Scholar 

  • Spears, J. W., Smith, C. J. and Hatfield, E. E. (1977). Rumen bacterial urease requirement for nickel.J. Dairy Sci., 60, 1073–6.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, R. M. W. (1979). Amino acid uptake systems in Bacteroides ruminicola. Can. J. Microbiol., 25, 1161–8.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, R. and Silver, S. (1977). Methylammonium uptake by Escherichia coli: evidence for a bacterial NH4 + transport system. Biochem. Biophys. Res. Commun., 75, 1133–9.

    Article  PubMed  CAS  Google Scholar 

  • Strydom, E., Mackie, R. I. and Woods, D. R. (1986). Detection and characterization of extracellular proteases in Butyrivibrio fibrisolvens H17C. Appl. Microbiol. Biotechnoi., 24, 214–17.

    CAS  Google Scholar 

  • Theodorou, M. K. (1995). Digestion kinetics of ruminant feeds and plant enzyme mediated proteolysis in ruminants. InConference on Rumen Function, Vol. 23, Chicago, Illinois, p. 5.

    Google Scholar 

  • Ueda, Y., Onodera, R. and Kandatsu, M. (1975). Metabolism of peptides by rumen ciliate protozoa.Jap. J. Zootech. Sci., 46, 34–41.

    CAS  Google Scholar 

  • Umbarger, H. E. (1978). Amino acid biosynthesis and its regulation. Annu. Rev. Biochem 47, 533–606.

    Article  CAS  Google Scholar 

  • Ushida, K., Jouany, J. P. and Demeyer, D. (1991). Effects of presence or absence of rumen protozoa on the efficiency of utilization of concentrate and fibrous feeds. In Physiological Aspects of Digestion and Metabolism in Ruminants, ed. T. Tsuda, Y. Sasaki and R. Kawashima. Academic Press, London, pp. 625–54.

    Google Scholar 

  • Van den Hende, C., Oyaert, W. and Bouchaert, J. H. (1963). Metabolism of glycine, alanine, valine, leucine and isoleucine by rumen bacteria. Res. Vet. Sci., 4, 382–9.

    Google Scholar 

  • Van Gylswyk, N. O. (1990). Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiol. Ecol., 73, 243–54.

    Article  Google Scholar 

  • Virtanen, A. I. (1966). Milk production of cows on protein-free feed. Science., 153, 1603–14.

    Article  PubMed  CAS  Google Scholar 

  • Wakita, M. and Hoshino, S. (1975). A branched chain amino acid aminotransferase from the rumen ciliate genus Entodinium. J. Protozool., 22, 281–5.

    CAS  Google Scholar 

  • Wallace, R. J. (1979). Effect of ammonia concentration on the composition, hydrolytic activity and nitrogen metabolism of the microbial flora of the rumen. J. Appl. Bacteriol., 47, 443–55.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1983). Hydrolysis of 14C-labelled proteins by rumen micro-organisms and by proteolytic enzymes prepared from rumen bacteria. Br. J. Nutr 50, 345–55.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1984). A comparison of the ureolytic and proteolytic activities of rumen bacteria from lambs fed conventionally and by intragastric infusion. Can. J. Anim. Sci., 64(Suppl.), 140–1.

    Article  CAS  Google Scholar 

  • Wallace, R. J. (1985a). Adsorption of soluble proteins to rumen bacteria and the role of adsorption in proteolysis. Br. J. Nutr., 53, 399–408.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1985b). Synergism between different species of proteolytic rumen bacteria. Curr. Microbiol., 12, 59–64.

    Article  Google Scholar 

  • Wallace, R. J. (1986a). Catabolism of amino acids by Megasphaera elsdenii. Appl. Environ. Microbiol., 51, 1141–3.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1986b). Rumen microbial metabolism and its manipulation. In Proceedings of the XIII International Congress of Nutrition, ed. T. G. Taylor and N. K. Jenkins. John Libbey, London, pp. 215–20.

    Google Scholar 

  • Wallace, R. J. (1992a). Acetylation of peptides inhibits their degradation by rumen microorganisms. Br. J. Nutr., 68, 365–72.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1992b). Gel filtration studies of peptide metabolism by rumen microorganisms. J. Sci. Food Agric., 58, 177–84.

    Article  CAS  Google Scholar 

  • Wallace, R. J. (1996). Rumen microbial metabolism of peptides and amino acids. J. Nutr., 126, 1326S-34S.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. and Brammall, M. L. (1985). The role of different species of rumen bacteria in the hydrolysis of protein in the rumen. J. Gen. Microbiol., 131, 821–32.

    CAS  Google Scholar 

  • Wallace, R. J. and Joblin, K. N. (1985). Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiol. Lett., 29, 119–25.

    Article  Google Scholar 

  • Wallace, R. J. and Kopecny, J. (1983). Breakdown of diazotised proteins and synthetic substrates by rumen bacterial proteases. Appl. Environ. Microbiol., 45, 212–17.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. and McKain, N. (1989a). Some observations on the susceptibility of peptides to degradation by rumen microorganisms. Asian-Austral. J. Anim. Sci., 2, 333–5.

    Google Scholar 

  • Wallace, R. J. and McKain, N. (1989b). Analysis of peptide metabolism by ruminal microorganisms. Appl. Environ. Microbiol., 55, 2372–6.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. and McKain, N. (1990). A comparison of methods for determining the concentration of extracellular peptides in rumen fluid of sheep. J. Agric. Sci., Camb., 114, 101–5.

    Article  CAS  Google Scholar 

  • Wallace, R. J. and McKain, N. (1991). A survey of peptidase activity in rumen bacteria.J. Gen. Microbiol., 137, 2259–64.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. and McKain, N. (1996). Influence of 1,10-phenanthroline and its analogues, other chelators, and transition metal ions on dipeptidase activity of the rumen bacterium, Prevotella ruminicola. J. Appl. Bacteriol., 81, 42–7.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. and McPherson, C. A. (1987). Factors affecting the rate of breakdown of bacterial protein in rumen fluid. Br. J. Nutr., 58, 313–23.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. J. and Munro, C. A. (1986). Influence of the rumen anaerobic fungus Neocallimastix frontalis on the proteolytic activity of a defined mixture of rumen bacteria growing on a solid substrate. Lett. Appl. Microbiol., 3, 23–6.

    Article  CAS  Google Scholar 

  • Wallace, R. J., Cheng, K.-J., Dinsdale, D. and Orskov, E. R. (1979). An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen.Nature, Lond., 279, 424–6.

    Article  CAS  Google Scholar 

  • Wallace, R. J., Broderick, G. A. and Brammall, M. L. (1987a). Protein degradation by ruminal microorganisms from sheep fed dietary supplements of urea, casein or albumin. Appl. Environ. Microbiol., 53, 751–3.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J., Broderick, G. A. and Brammall, M. L. (1987b). Microbial protein and peptide metabolism in rumen fluid from faunated and ciliate-free sheep. Br. J. Nutr., 58, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. J., Newbold, C. J. and McKain, N. (1990b). Patterns of peptide metabolism by rumen microorganisms. In The Rumen Ecosystem. The Microbial Metabolism and its Control, ed. S. Hoshino, R. Onodera, H. Minato and H. Itabashi. Japan Scientific Societies Press, Tokyo, pp. 43–50.

    Google Scholar 

  • Wallace, R. J., McKain, N. and Newbold, C. J. (1990b). Metabolism of small peptides in rumen fluid. Accumulation of intermediates during hydrolysis of alanine oligomers, and comparison of peptidolytic activities of bacteria and protozoa. J. Sci. Food Agric., 50, 191–9.

    Article  CAS  Google Scholar 

  • Wallace, R. J., Newbold, C. J. and McKain, N. (1990c). Influence of ionophores and energy inhibitors on peptide metabolism by rumen bacteria. J. Agric. Sci., Camb., 115, 285–90.

    Article  CAS  Google Scholar 

  • Wallace, R. J., Newbold, C. J., Watt, N. D. et al. (1993a). Amino acid composition of peptides in extracellular ruminal fluid from sheep. J. Agric. Sci., Camb., 120, 129–33.

    Article  CAS  Google Scholar 

  • Wallace, R. J., Frumholtz, P. P. and Walker, N. D. (1993b). Breakdown of N-terminally modified peptides and an isopeptide by rumen microorganisms. Appl. Environ. Microbiol., 59, 3147–9.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J., McKain, N. and Broderick, G. A. (1993c). A comparison of the breakdown of pure peptides by Bacteroides ruminicola and mixed microorganisms from the sheep rumen. Curr. Microbiol., 26, 333–6.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. J., Kopecny, J., Broderick, G. A. et al. (1995a). Cleavage of di – and tripeptides by Prevotella ruminicola. Anaerobe., 1, 335–43.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. J., Eschenlauer, S., Newbold, C. J. et al. (1995b). Rumen bacteria capable of growth on peptides and amino acids as sole source of energy: numbers and their role in ammonia production. Annal. Zootech., 44(Suppl.), 147.

    Article  Google Scholar 

  • Wallace, R. J., Newbold, C. J. and McKain, N. (1996). Inhibition by 1,10-phenanthroline of the breakdown of peptides by rumen bacteria and protozoa. J. Appl. Bacteriol., 80, 425–30.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J., McKain, N., Broderick, G. A. et al. (1997). Peptidases of the rumen bacterium, Prevotella ruminicola. Anaerobe (in press).

    Google Scholar 

  • Wallis, O. C. and Coleman, G. S. (1967). Incorporation of l4C-labelled components of Escherichia coli and of amino acids by Isotricha intestinalis and Isotricha prostoma from the sheep rumen. J. Gen. Microbiol., 49, 315–23.

    PubMed  CAS  Google Scholar 

  • Webb, E. C. (1992). Enzyme Nomenclature 1992. Academic Press, London.

    Google Scholar 

  • Westlake, K. and Mackie, R. I. (1990). Peptide and amino acid transport in Streptococcus bovis. Appl Microbiol. Biotechnol., 34, 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Whetstone, H. D., Davis, C. L. and Bryant, M. P. (1981). Effect of monensin on breakdown of protein by ruminal microorganisms in vitro. J. Anim. Sci., 53, 803–9.

    PubMed  CAS  Google Scholar 

  • Williams, A. G. (1979). The selectivity of carbohydrate assimilation in the anaerobic rumen ciliate Dasytricha ruminantium. J. Appl. Bacteriol., 47, 511–20.

    PubMed  CAS  Google Scholar 

  • Williams, A. G. (1986). Rumen holotrich ciliate protozoa. Microbiol. Rev., 50, 25–49.

    PubMed  CAS  Google Scholar 

  • Williams, A. G. and Coleman, A. G. (1992). The Rumen Protozoa. Springer-Verlag, New York.

    Book  Google Scholar 

  • Williams, A. G. and Harfoot, C. G. (1976). Factors affecting the uptake and metabolism of soluble carbohydrates by the rumen ciliateDasytricha ruminantium isolated from ovine rumen contents by filtration. J. Gen. Microbiol., 96, 125–36.

    PubMed  CAS  Google Scholar 

  • Williams, A. P. and Cockburn, J. E. (1991). Effect of slowly and rapidly degraded protein sources on the concentration of amino acids and peptides in the rumen of steers. J. Sci. Food Agric., 56, 303–14.

    Article  CAS  Google Scholar 

  • Williams, P. P., Davies, R. E., Doetsch, R. N. and Gutierrez, J. (1961). Physiological studies of the rumen ciliateOphryoscolex caudatus Eberlein. Appl. Microbiol., 9, 405–9.

    PubMed  CAS  Google Scholar 

  • Woolfolk, C. A., Shapiro, B. and Stadtman, E. R. (1966). Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli. Arch. Biochem. Biophys., 116, 117–92.

    Article  Google Scholar 

  • Wozny, M. A., Bryant, M. P., Holdeman, L. V. and Moore, W. E. C. (1977). Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces. Appl. Environ. Microbiol, 33, 1097–104.

    PubMed  CAS  Google Scholar 

  • Wright, D. E. (1967). Metabolism of peptides by rumen microorganisms. Appl. Microbiol., 15, 547–50.

    PubMed  CAS  Google Scholar 

  • Wright, D. E. and Hungate, R. E. (1967). Amino acid concentrations in rumen fluid. Appl. Microbiol., 15, 148–51.

    PubMed  CAS  Google Scholar 

  • Yang, C. M. J. and Russell, J. B. (1992). Resistance of proline-containing peptides to ruminal degradation in vitro. Appl. Environ. Microbiol., 58, 3954–8.

    PubMed  CAS  Google Scholar 

  • Yanke, L. J., Dong. Y., McAllister, T. A. et al. (1993). Comparison of amylolytic and proteolytic activities of ruminal fungi grown on cereal grains. Can. J. Microbiol., 39, 817–20.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, M. T. and Carlson, J. R. (1981). Production of skatole and para-cresol by a rumen Lactobacillus sp. Appl. Environ. Microbiol 41, 71–6.

    PubMed  CAS  Google Scholar 

  • Yokoyama, M. T., Carlson, J. R. and Holdeman, L. V. (1977). Isolation and characteristics of a skatole-producing Lactobacillus sp. from the bovine rumen.Appl. Environ. Microbiol., 34, 837–42.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Wallace, R.J., Onodera, R., Cotta, M.A. (1997). Metabolism of nitrogen-containing compounds. In: Hobson, P.N., Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1453-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1453-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7149-9

  • Online ISBN: 978-94-009-1453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics