Skip to main content

Manipulation of ruminal fermentation

  • Chapter
The Rumen Microbial Ecosystem

Abstract

Ruminant animals have two metabolic systems that differ in their nutrient requirements: microbial metabolism in the rumen and mammalian metabolism in the tissues. Maximizing or optimizing ruminant productivity involves meeting requirements in proper amounts and balance for both metabolic systems. Ruminant nutritionists formulate diets with an intention of providing the animal with optimal levels of nutrients to achieve the optimal or maximal level of performance. Ideally, most of the dietary constituents should be digested, absorbed and utilized by the tissues as completely as possible. However, in reality, feed components are digested incompletely, more so with feedstuffs fed to ruminants than to non-ruminants. In ruminants, nutrient inputs are subjected first to fermentative digestion by microorganisms and then to glandular digestion by the host. Fermentative digestion is advantageous for substrates that cannot be digested by the host enzymes but is inefficient for digesting proteins, amino acids and sugars, because of losses in energy and nitrogen. Therefore, a proper balance between fermentative and glandular digestion needs to be achieved for optimal productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AAFCO (1986). Official publication of the Association of American Feed Control Officials, College Station, Texas.

    Google Scholar 

  • Abdouli, H. and Schaefer, D. M. (1985). Niacin saturation constants for Lactobacillusplantarum and Treponema bryantii. J. Dairy Sci., 68, 2372–6.

    CAS  Google Scholar 

  • Abdouli, H. and Schaefer, D. M. (1986a). Effects of two dietary niacin concentrations on ruminal fluid free niacin concentration, and of supplemental niacin and source of inoculum on in vitro microbial growth, fermentative activity and nicotinomide adenine dinucleotide pool size. J. Anim. Sci., 62, 254–62.

    CAS  Google Scholar 

  • Abdouli, H. and Schaefer, D. M. (1986b). Impact of niacin and length of incubation on protein synthesis, soluble to total protein ratio and fermentative activity of ruminal microorganisms. J. Anim. Sci., 62, 244–53.

    CAS  Google Scholar 

  • Adams, D. C., Galyean, M. L., Kiesling, H. E. et al. (1981). Influence of viable yeast culture, sodium bicarbonate and monensin on liquid dilution rate, rumen fermentation and feedlot performance of growing lambs and digestibility in lambs. J. Anim. Sci., 53, 780–89.

    CAS  Google Scholar 

  • Aitchison, E. M., Tanaka, K. and Rowe, J. B. (1989). Evaluation of feed additives for increasing wool production from Merino Sheep. 2. Flavomycin and tetronasin included in lucerne-based pellets or wheaten chaff fed ad libitum. Aust. J. Exp. Agric., 29, 327–32.

    CAS  Google Scholar 

  • Akkad, I. EI. and Hobson, P. N. (1966). Effect of antibiotics on some rumen and intestinal bacteria. Nature, 209, 1046–7.

    PubMed  CAS  Google Scholar 

  • Allen, J. D. and Harrison, D. G. (1979). The effect of dietary addition of monensin upon digestion in the stomachs of sheep. Proc. Nutr. Soc., 38, 32A.

    PubMed  CAS  Google Scholar 

  • Allison, M. J. (1963). Biosynthesis of branched-chain fatty acids by rumen bacteria. Arch. Biochem. Biophys., 101, 269–77.

    PubMed  CAS  Google Scholar 

  • Allison, M. J. (1965). Nutrition of rumen bacteria. In Physiology of Digestion in the Ruminant, ed. R. W. Dougherty. Butterworths, Washington, DC, pp. 369–78.

    Google Scholar 

  • Allison, M. J. and Reddy, C. A. (1984). Adaptations of gastrointestinal bacteria in response to changes in dietary oxalate and nitrate. In Current Perspectives in Microbial Ecology, ed. M. J. Klug and C. A. Reddy. American Society for Microbiology, Washington, DC, pp. 248–56.

    Google Scholar 

  • Altenbach, S. B. and Townsend, J. A. (1995). Transgenic plants with improved protein quality. In Biotechnology in Animal Feeds and Animal Feeding, ed. R. J. Wallace and A. Chesson. VCH Publishers, New York, pp. 71–92.

    Google Scholar 

  • Anderson, K. L., Nagaraja, T. G., Morrill, J. L. et al. (1988). Performance and ruminal changes of early-weaned calves fed lasalocid. J. Anim. Sci., 66, 806–13.

    PubMed  CAS  Google Scholar 

  • Andries, J. I., Buysse, F. X., Debrabander, D. L. and Cottyn, B. G. (1987). Isoacids in ruminant nutrition: their role in ruminal and intermediary metabolism and possible influences on performances — a review. Anim. Fd Sci. Technol., 18, 169–80.

    CAS  Google Scholar 

  • Annison, E. F. (1956). Nitrogen metabolism in the sheep. Biochem. J., 64, 705–14.

    PubMed  CAS  Google Scholar 

  • Annison, E. F. and Armstrong, D. G. (1970). Volatile fatty acid metabolism and energy supply. In Physiology of Digestion and Metabolism in the Ruminant, ed. A. T. Phillipson. Oriel Press, Newcastle upon Tyne, pp. 422–37.

    Google Scholar 

  • Armentano, L. E. and Young, J. W. (1983). Production and metabolism of volatile fatty acids, glucose and CO2 in steers and the effects of monensin on volatile fatty acid kinetics. J. Nutr., 113, 1265–77.

    PubMed  CAS  Google Scholar 

  • Armstrong, J. D. and Spears, J. W. (1988). Intravenous administration of ionophores in ruminants: effects on metabolism independent of the rumen. J. Anim. Sci., 66, 1807–17.

    PubMed  CAS  Google Scholar 

  • Axe, D. E., Bolsen, K. K., Harmon, D. L. et al. (1987). Effect of wheat and high-moisture sorghum grain fed singly and in combination on ruminal fermentation, solid and liquid flow, site and extent of digestion and feeding performance of cattle. J. Anim. Sci., 64, 897–906.

    PubMed  CAS  Google Scholar 

  • Baile, C. A. and McLaughlin, C. L. (1978). Chemically stimulated feed intake in ruminants. Cereal Foods World, 23, 290–9.

    Google Scholar 

  • Baile, C. A., McLaughlin, C. L., Potter, E. L. and Chalupa, W. (1979). Feeding behavior changes of cattle during introduction of monensin with roughage or concentrate diets. J. Anim. Sci., 48, 1501–8.

    PubMed  CAS  Google Scholar 

  • Baldwin, K. A., Bitman, J., Thompson, M. J. and Robbins, W. E. (1981). Effects of primary, secondary and tertiary amines on in vitro cellulose digestion and volatile fatty acid production by ruminal microorganisms. J. Anim. Sci., 53, 226–30.

    PubMed  CAS  Google Scholar 

  • Baldwin, K. A., Bitman, J. and Thompson, M. J. (1982). Comparison of N, N-dimethyldodecanamine with antibiotics on in vitro cellulose digestion and volatile fatty acid production by ruminal microorganisms. J. Anim. Sci., 55, 673–9.

    PubMed  CAS  Google Scholar 

  • Bara, M. and Kmet, V. (1987). Effect of pectinase on rumen fermentation in sheep and lambs. Arch. Anim. Nutr., 78, 643–9.

    Google Scholar 

  • Bartle, S. J., Preston, R. L. and Bailie, J. H. (1988). Dose-response relationship of the ionophore tetronasin in growing-finishing cattle. J. Anim. Sci., 66, 1502–7.

    PubMed  CAS  Google Scholar 

  • Bartley, E. E., Fountaine, F. C. and Atkinson, F. W. (1950). The effects of an APF concentrate containing aureomycin on the growth and well being of young calves. J. Anim. Sci., 9, 646–7.

    Google Scholar 

  • Bartley, E. E., Herod, E. L., Bechtle, R. M. et al. (1979). Effect of monensin or lasalocid, with and without niacin or amichloral, on rumen fermentation and feed efficiency. J. Anim. Sci., 49, 1066–75.

    CAS  Google Scholar 

  • Bartley, E. E., Nagaraja, T. G., Pressman, E. S. et al. (1983). Effects of lasalocid or monensin on legume or grain (feedlot) bloat. J. Anim. Sci., 56, 1400–6.

    PubMed  CAS  Google Scholar 

  • Bauchop, T. (1967). Inhibition of rumen methanogenesis by methane analogues. J. Bacteriol., 94, 171–5.

    PubMed  CAS  Google Scholar 

  • Bauman, D. E., Davis, C. L. and Bucholtz, H. F. (1971). Propionate production in the rumen of cows fed either a control or high-grain, low-fiber diet. J. Dairy Sci., 54, 1282–7.

    PubMed  CAS  Google Scholar 

  • Beauchemin, K. A., Rode, L. M. and Sewalt, V. J. H. (1995). Fibrolytic enzymes improve growth of steers fed forage-based diets. Ann. Zootech., 44, 69(Abstract).

    Google Scholar 

  • Beckman, T. J., Chambers, J. V. and Cunningham, M. D. (1977). Influence of Lactobacillus acidophilus on the performance of young dairy calves. J. Dairy Sci., 60, 74(Abstract).

    Google Scholar 

  • Beede, D. K. and Farlin, S. D. (1977a). Effects of antibiotics on apparent lactate and volatile fatty acid production: in vitro rumen fermentation studies. J. Anim. Sci., 45, 385–92.

    CAS  Google Scholar 

  • Beede, D. K. and Farlin, S. D. (1977b). Effects of capreomycin disulfate and oxamycin on ruminal pH, lactate and volatile fatty acid concentrations in sheep experiencing acidosis. J. Anim. Sci., 45, 393–401.

    PubMed  CAS  Google Scholar 

  • Beever, D. E., Losada, H. R., Gale, D. L. et al. (1987). The use of monensin or formaldehyde to control digestion of nitrogenous constituents of perennial ryegrass (Lolium perenne cv. Melle) and white clover (Trifolium repens cv. blanca) in the rumen of cattle. Br. J. Nutr., 57, 57–67.

    PubMed  CAS  Google Scholar 

  • Beharka, A. A. and Nagaraja, T. G. (1993). Effect of Aspergillus oryzae fermentation extract (Amaferm) on in vitro fiber degradation. J. Dairy Sci., 76, 812–18.

    PubMed  CAS  Google Scholar 

  • Beharka, A. A., Nagaraja, T. G. and Morrill, J. L. (1991). Performance and ruminal function development of young calves fed diets with Aspergillus oryzae fermentation extract. J. Dairy Sci., 74, 4326–36.

    PubMed  CAS  Google Scholar 

  • Benz, D. A., Byers, F. M., Schelling, G. T. etal. (1989). Ionophores alter hepatic concentrations of intermediary carbohydrate metabolites in steers. J. Anim. Sci., 67, 2393–9.

    PubMed  CAS  Google Scholar 

  • Bergen, W. G. and Bates, D. B. (1984). Ionophores: their effect on production efficiency and mode of action. J. Anim. Sci., 58, 1465–83.

    PubMed  CAS  Google Scholar 

  • Bergen, W. G. and Yokoyama, M. T. (1977). Productive limits to rumen fermentation. J. Anim. Sci., 46, 573–84.

    Google Scholar 

  • Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev., 70, 567–87.

    PubMed  CAS  Google Scholar 

  • Bergman, E. N., Katz, M. L. and Kaufman, C. F. (1970). Quantitative aspects of hepatic and portal glucose metabolism and turnover in sheep. Am. J. Physiol., 219, 785–93.

    PubMed  CAS  Google Scholar 

  • Bergstrom, R. C. and Maki, L. R. (1974). Effect of monensin in young crossbred lambs with naturally occurring coccidiosis. J. Am. Vet. Med. Assoc., 165, 288–9.

    PubMed  CAS  Google Scholar 

  • Berkman, R. N., Richards, E. A., Vanduyn, R. L. and Kline, R. M. (1961). The pharmacology of tylosin, a new antibiotic in the chicken. In Antimicrobial Agents Annual, ed. P. Gray et al. Plenum Press, New York, pp. 595–604.

    Google Scholar 

  • Bernalier, A., Bogaert, C., Fonty, G. and Jouany, J. P. (1989). Effect of ionophore antibiotics on anaerobic rumen fungi. In The Roles of Protozoa and Fungi in Ruminant Digestion, ed. J. V. Nolan, R. A. Leng and D. I. Demeyer. Penambul Books, Armidale, Australia, pp. 273–5.

    Google Scholar 

  • Bird, S. H. and Leng, R. A. (1983). The influence of the absence of rumen protozoa on ruminant production. In Recent Advances in Animal Production in Australia, ed. D. J. Farrell and D. Vohra. University of New England Publishing Unit, Armidale, Australia, pp. 110–18.

    Google Scholar 

  • Bladen, H. A., Bryant, M. P. and Doetsch, R. N. (1961). A study of bacterial species from the rumen which produce ammonia from protein hydrolyzate. Appl. Microbiol., 9, 175–80.

    PubMed  CAS  Google Scholar 

  • Bock, B. J., Harmon, D. L., Brandt, Jr R. B. and Schneider, J. E. (1991). Fat source and calcium level effects on finishing steer performance, digestion, and metabolism. J. Anim. Sci., 69, 2211–24.

    PubMed  CAS  Google Scholar 

  • Boerner, B. J., Byers, F. M., Schelling, G. T. et al. (1987). Trona and sodium bicarbonate in beef cattle diets: effects on pH and volatile fatty acid concentrations. J. Anim. Sci., 65, 309–16.

    PubMed  CAS  Google Scholar 

  • Bogaert, C., Gomez, L., Jouany, J. P. and Jeminet, G. (1989). Effects of the ionophore antibiotics lasalocid and cationomycin on ruminal fermentation in vitro (RUSITEC). Anim. Fd Sci. Technol., 27, 1–15.

    CAS  Google Scholar 

  • Bogaert, C., Gomez, L. and Jouany, J. P. (1991). Effects of lasalocid and cationomycin on the digestion of plant cell walls in sheep. Can. J. Anim. Sci., 71, 379–88.

    CAS  Google Scholar 

  • Boggs, D. L., Bergen, W. G. and Hawkins, D. R. (1987). Effects of tallow supplementation and protein withdrawal on ruminal fermentation, microbial synthesis and site of digestion. J. Anim. Sci., 64, 907–14.

    PubMed  CAS  Google Scholar 

  • Bonhomme, A. (1990). Rumen ciliates: their metabolism and relationships with bacteria and their hosts. Anim. Fd Sci. Technol., 30, 203–66.

    CAS  Google Scholar 

  • Bradley, B. D., Alderson, N. E., Knight, W. M. et al. (1979). Oxytetracycline absorption and excretion in wethers. J. Anim. Sci., 48, 1464–9.

    PubMed  CAS  Google Scholar 

  • Brandt, R. T., Jr and Anderson, S. J. (1990). Supplemental fat source affects feedlot performance and carcass traits of finishing yearling steers and estimated diet net energy value. J. Anim. Sci., 68, 2208–16.

    PubMed  CAS  Google Scholar 

  • Branine, M. E., Hubbert, M. E., Lofgren, G. P. et al. (1988). Effects of alternating monensin and lasalocid at weekly intervals on performance of feedlot cattle. Proc. W. Soc. Am. Soc. Anim. Sci., 39, 61.

    Google Scholar 

  • Breeze, R. G. and Carlson, J. R. (1982). Chemical induced lung injury in domestic animals. Adv. Vet. Sci. Comp. Med., 26, 201–31.

    PubMed  CAS  Google Scholar 

  • Brent, B. E. (1976). Relationship of acidosis to other feedlot ailments. J. Anim. Sci., 43, 930–5.

    PubMed  CAS  Google Scholar 

  • Brent, B. E. and Bartley, E. E. (1984). Thiamin and niacin in the rumen. J. Anim. Sci., 59, 813–22.

    PubMed  CAS  Google Scholar 

  • Brethour, J. R. (1984). Adding Fat to Milo-based Steer Finishing Rations. Report of Progress 452, Agriculture Experiment Station. Kansas State University, Manhattan, Kansas.

    Google Scholar 

  • Brethour, J. R. and Chalupa, W. V. (1977). Amichloral and monensin in high-roughage cattle rations. J. Anim. Sci., 45(Suppl. 1), 222(Abstract).

    Google Scholar 

  • Brink, D. R., Lowry, J. R., Stock, R. A. and Parrott, J. C. (1990). Severity of liver abscesses and efficiency of feed utilization of feedlot cattle. J. Anim. Sci., 68, 1201–7.

    PubMed  CAS  Google Scholar 

  • Britton, R. J. and Krehbiel, C. (1993). Nutrient metabolism by gut tissues. J. Dairy Sci., 76, 2125–31.

    PubMed  CAS  Google Scholar 

  • Brock, F. M., Forsberg, C. W. and Buchanan-Smith, J. G. (1982). Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appli. Environ. Microbiol., 44, 561–9.

    CAS  Google Scholar 

  • Brockman, R. P. (1985). Role of insulin in regulating hepatic gluconeogenesis in sheep. Can. J. Physiol. Pharmacol., 63, 1460–4.

    PubMed  CAS  Google Scholar 

  • Brockman, R. P. (1990). Effect of insulin on the utilization of propionate in gluconeogenesis. Br. J. Nutr., 64, 95–101.

    PubMed  CAS  Google Scholar 

  • Broderick, G. A. and Balthrop, J. E. (1979). Chemical inhibition of amino acid deamination by ruminai microbes in vitro. J. Anim. Sci., 49, 1101–11.

    CAS  Google Scholar 

  • Broderick, G. A. and Wallace, R. J. (1988). Effects of dietary nitrogen source on concentrations of ammonia, free amino acids, and fluorescamine-reactive peptides in the sheep rumen. J. Anim. Sci., 66, 2233–8.

    CAS  Google Scholar 

  • Broderick, G. A., Wallace, R. J. and McKain, N. (1988). Uptake of small neutral peptides by mixed rumen micro-organisms in vitro. J. Sci. Fd Agric., 42, 109–18.

    CAS  Google Scholar 

  • Broderick, G. A., Wallace, R. J. and Ørskov, E. R. (1991). Control of rate and extent of protein degradation. In Physiological Aspects of Digestion and Metabolism in Ruminants, ed. T. Tsuda, Y. Sasaki and R. Kawashima. Academic Press, London, pp. 541–92.

    Google Scholar 

  • Broekhoven, L. W. V. and Davies, J. A. R. (1981). The analysis of volatile N-nitrosamines in the rumen fluid of cows. Neth. J. Agric. Sci., 29, 173–7.

    Google Scholar 

  • Broekhoven, L. W. V., Davies, J. A. R. and Geurink, J. H. (1989). The metabolism of nitrate and proline in the rumen fluid of a cow and its effect on in vivo formation of N-nitrosoproline. Neth. J. Agric. Sci., 37, 157–63.

    Google Scholar 

  • Brooks, C. C., Garner, G. B., Gehrke, C. W. et al. (1954). The effect of added fat on the digestion of cellulose and protein by ovine rumen microorganisms. J. Anim. Sci., 13, 758–64.

    CAS  Google Scholar 

  • Broudiscou, L. and Lassalas, B. (1991). Linseed oil supplementation of the diet of sheep: effect on the in vitro fermentation of amino acids and proteins by rumen microorganisms. Anim. Fd Sci. Technol., 33, 161–71.

    CAS  Google Scholar 

  • Broudiscou, L., Van Nevel, C. J. and Demeyer, D. I. (1990a). Effect of soy oil hydrolysate on rumen digestion in defaunated and refaunated sheep. Anim. Fd Sci. Technol., 30, 51–67.

    CAS  Google Scholar 

  • Broudiscou, L., Van Nevel, C. J. and Demeyer, D. I. (1990b). Incorporation of soy oil hydrolysate in the diet of defaunated or refaunated sheep: effect on rumen fermentation in vitro. Arch. Anim. Nutr., 40, 329–37.

    CAS  Google Scholar 

  • Brown, H., Bing, R. F., Grueter, H. P. et al. (1975). Tylosin and chlortetracycline for the prevention of liver abscesses improved weight gains and feed efficiency in feedlot cattle. J. Anim. Sci., 40, 207–13.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. (1973). Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed. Proc., 32, 1809–12.

    PubMed  CAS  Google Scholar 

  • Bueno, L. and Ralston, P. (1982). Effects of orotic acid on in vitro volatile fatty acid production by sheep rumen fluid. J. Anim. Sci., 55, 951–6.

    CAS  Google Scholar 

  • Bull, L. S., Rumpler, W. V., Sweeney, T. F. and Zinn, R. A. (1979). Influence of ruminai turnover on site and extent of digestion. Fed. Proc., 38, 2713–19.

    PubMed  CAS  Google Scholar 

  • Burrin, D. G. and Britton, R. A. (1986). Response to monensin in cattle during subacute acidosis. J. Anim. Sci., 63, 888–93.

    PubMed  CAS  Google Scholar 

  • Burrin, D. G., Stock, R. A. and Britton, R. A. (1988). Monensin level during grain adaptation and finishing performance in cattle. J. Anim. Sci., 66, 513–21.

    PubMed  CAS  Google Scholar 

  • Caldwell, D. R. and Hudson, R. F. (1974). Sodium, an obligate growth requirement for predominant rumen bacteria. Appl. Microbiol., 27, 549–52.

    PubMed  CAS  Google Scholar 

  • Campos-Montiel, R., Herrera-Saldana, R., Viniegas, G. G. and Diaz, C. M. (1990). The effect of Aspergillus niger and Aspergillus oryzae (Amaferm) as probiotics on in situ digestibility of a high fibre diet. J. Dairy Sci., 73, 133(Abstract).

    Google Scholar 

  • Campos-Montiel, R., Tapia, I. M., Herrera-Saldana, R. and Viniegas, G. G. (1991). Is the fungal probiotic effect in ruminants related to enzyme activity? J. Dairy Sci., 74, 177(Abstract).

    Google Scholar 

  • Candau, M. and Kone, L. (1980). Influence de la thiamine sur la protéosynthèse bactérienne chez le mouton. Reprod. Nutr. Dev., 20, 1695–9.

    PubMed  CAS  Google Scholar 

  • Cann, I. K. O., Kobayashi, Y., Onada, A. et al. (1993). Effects of some ionophore antibiotics and polyoxins on the growth of anaerobic rumen fungi. J. Appl. Bacteriol., 74, 127–33.

    PubMed  CAS  Google Scholar 

  • Carro, M. D., Lebzien, P. and Rohr, K. (1992a). Influence of yeast culture on the in vitro fermentation (Rusitec) of diets containing variable portions of concentrates. Anim. Fd Sci. Technol, 37, 209–20.

    Google Scholar 

  • Carro, M. D., Lebzien, P. and Rohr, K. (1992a). Effects of yeast culture on rumen fermentation, digestibility and duodenal flow in dairy cows fed a silage based diet. Livest. Prod. Sci., 32, 219–29.

    Google Scholar 

  • Casey, N. H., Wessels, R. H. and Meissner, H. H. (1994). Feediot growth performance of steers on salinomycin, monensin and a daily rotation between the two. J. South Afr. Vet. Assoc., 65, 160–3.

    CAS  Google Scholar 

  • Caton, J. S., Erickson, D. O., Carey, D. A. and Ulmer, D. L. (1993). Influence of Aspergillus oryzae fermentation extract on forage intake, site of digestion, in situ degradability, and duodenal amino acid flow in steers grazing cool-season pasture. J. Anim. Sci., 71, 779–87.

    PubMed  CAS  Google Scholar 

  • Chademana, I. and Offer, N. W. (1990). The effect of dietary inclusion of yeast culture on digestion in the sheep. Anim. Prod., 50, 483–9.

    Google Scholar 

  • Chalupa, W. (1975). Rumen bypass and protection of proteins and amino acids. J. Dairy Sci., 58, 1198–218.

    PubMed  CAS  Google Scholar 

  • Chalupa, W. (1977). Manipulating rumen fermentation. J. Anim. Sci., 46, 585–99.

    Google Scholar 

  • Chalupa, W. (1979). Control of microbial fermentation in the rumen. In Regulation of Acid-Base Balance, ed. W. H. Hale and P. Meinhardt. Church and Dwight Co., Inc., Piscataway, NJ, pp. 82–96.

    Google Scholar 

  • Chalupa, W. (1980). Chemical control of rumen microbial metabolism. In Digestive Physiology and Metabolism in Ruminants, ed. Y. Ruckebusch and P. Thivend. MTP Press Ltd, AVI Publishing Co., Inc., Westport, Connecticut, pp. 325–47.

    Google Scholar 

  • Chalupa, W. (1981). Rumen fermentation and modification. Dev. Ind. Microbiol., 22, 277–93.

    CAS  Google Scholar 

  • Chalupa, W. (1984). Manipulation of rumen fermentation. In Recent Advances in Animal Nutrition, ed. W. Haresign and D. J. A. Cole. Butterworths, London, pp. 143–60.

    Google Scholar 

  • Chalupa, W. and Kronfeld, D. S. (1983). Sites of actions of buffers in ruminants. In Buffers, Neutralizes and Electrolytes Symposium. National feed Ingrediants Association, Des Moines, Iowa, pp. 1–24.

    Google Scholar 

  • Chalupa, W., Corbett, W. and Brethour, J. R. (1980). Effects of monensin and amichloral on rumen fermentation. J. Anim. Sci., 51, 170–9.

    PubMed  CAS  Google Scholar 

  • Chalupa, W., Patterson, J. A., Parish, R. C. and Chow, A. W. (1983a). Effect of diaryliodium chemicals on rumen fermentation in vitro and in vivo. J. Anim. Sci., 57, 186–94.

    PubMed  CAS  Google Scholar 

  • Chalupa, W., Patterson, J. A., Parish, R. C. and Chow, A. W. (1983b). Effects of diaryliodium chemicals on nitrogen utilization in growing steers. J. Anim. Sci., 57, 195–200.

    PubMed  CAS  Google Scholar 

  • Chalupa, W., Patterson, J. A., Parish, R. C. and Chow, A. W. (1983c). Effects of 4, 4’-dimethyl-diphenyliodonium chloride on performance of growing cattle. J. Anim. Sci., 57, 201–5.

    PubMed  CAS  Google Scholar 

  • Chalupa, W., Rickabaugh, B., Kronfeld, D. S. and Sklan, D. (1984). Rumen fermentation in vitro as influenced by long chain fatty acids. J. Dairy Sci., 67, 1439–44.

    PubMed  CAS  Google Scholar 

  • Chalupa, W., Vecchiarelli, B., Elser, A. E. et al. (1986). Ruminal fermentation in vivo as influenced by long-chain fatty acids. J. Dairy Sci., 69, 1293–301.

    PubMed  CAS  Google Scholar 

  • Chattaway, F. W. (1944). Growth stimulation of Lactobacillus casei by pyrimidines. Nature, 153, 250.

    CAS  Google Scholar 

  • Chaucheryras, F., Fonty, G., Bertin, G. and Gouet, P. (1995a). In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archae methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol., 61, 3466–7.

    Google Scholar 

  • Chaucheryras, F., Fonty, G., Bertin, G. and Gouet, P. (1995b). Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth, and cellulolytic activity of the rumen anaerobic fungus, Neocallimastix frontalis MCH 3. Curr. Microbiol., 31, 201–5.

    Google Scholar 

  • Chen, G. and Russell, J. B. (1989a). More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl. Environ. Microbiol., 55, 1052–7.

    PubMed  CAS  Google Scholar 

  • Chen, G. and Russell, J. B. (1989b). Sodium-dependent transport of branched-chain amino acids by a monensin-sensitive ruminal Peptostreptococcus. Appl. Environ. Microbiol., 55, 2658–63.

    PubMed  CAS  Google Scholar 

  • Chen, G. and Russell, J. B. (1991). Effect of monensin and a protonophore on protein degradation, peptide accumulation, and deamination by mixed ruminal microorganisms in vitro. J. Anim. Sci., 69, 2196–203.

    PubMed  CAS  Google Scholar 

  • Chen, G., Sniffen, C. J. and Russell, J. B. (1987). Concentration and estimated flow of peptides from the rumen of dairy cattle: effects of protein quantity, protein solubility and feeding frequency. J. Dairy Sci., 70, 983–92.

    PubMed  CAS  Google Scholar 

  • Chen, M. and Wolin, M. J. (1979). Effect of monensin and lasalocid sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl. Environ. Microbiol., 38, 72–7.

    PubMed  CAS  Google Scholar 

  • Chillard, Y. (1993). Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: a review. J. Dairy Sci., 76, 3897–931.

    Google Scholar 

  • Chiquette, J. (1995). Saccharomyces cerevisiae and Aspergillus oryzae used alone or in combination, as a feed supplement for beef and dairy cattle. Can. J. Anim. Sci., 75, 405–15.

    Google Scholar 

  • Chiquette, J., Girard, C. L. and Matte, J. J. (1993). Effect of diet and folic acid addition on digestibility and ruminal fermentation in growing steers. J. Anim. Sci., 71, 2793–8.

    PubMed  CAS  Google Scholar 

  • Chow, J. M. and Russell, J. B. (1990). Effect of ionophores and pH on growth of Streptococcus bovis in batch and continuous culture. Appl. Environ. Microbiol., 56, 1588–93.

    PubMed  CAS  Google Scholar 

  • Chow, J. M., Van Kessel, J. S. and Russell, J. B. (1994). Binding of radiolabeled monensin and lasalocid to ruminal microorganisms and feed. J. Anim. Sci., 72, 1630–5.

    PubMed  CAS  Google Scholar 

  • Clapperton, J. L. (1974). The effect of trichloroacetamide chloroform and linseed oil given into the rumen of sheep on some of the end products of rumen digestion. Br. J. Nutr., 32, 155–61.

    PubMed  CAS  Google Scholar 

  • Clapperton, J. L. (1977). The effect of a methane-suppressing compound trichloroethyl adipate on rumen fermentation and the growth of sheep. Anim. Prod., 24, 169–81.

    Google Scholar 

  • Clark, J. H. and Davis, C. L. (1980). Some aspects of feeding high producing dairy cows. J. Dairy Sci., 63, 873–85.

    CAS  Google Scholar 

  • Clark, J. H., Plegge, A. W., Davis, C. L. and McCoy, G. C. (1989). Effects of calcium carbonate on ruminal fermentation, nutrient digestibility, and cow performance. J. Dairy Sci., 12, 493–500.

    Google Scholar 

  • Clarke, R. T. J. and Reid, C. S. W. (1973). Foamy bloat of cattle. A review. J. Dairy Sci., 57, 753–85.

    Google Scholar 

  • Clary, E. M., Brandt, Jr, R. T., Harmon, D. L. and Nagaraja, T. G. (1993). Supplemental fat and ionophores and ruminal digesta kinetics in steers. J. Anim. Sci., 71, 3115–23.

    PubMed  CAS  Google Scholar 

  • Clary, E. M., Brandt, Jr, R. T. and Nagaraja, T. G. (1991). Effect of fats and ionophores on in vitro fermentation of a 90% concentrate diet. J. Anim. Sci., 69, 157(Abstract).

    Google Scholar 

  • Coates, M. E. (1980). The gut microflora and growth. In Growth in Animals, ed. T. L. J. Lawrence. Butterworths, Boston, MA, pp. 175–88.

    Google Scholar 

  • Cocito, C. (1979). Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol. Rev., 43, 145–98.

    PubMed  CAS  Google Scholar 

  • Cole, N. A. and McCroskey, J. E. (1975). Effects of hemiacetal of chloral and starch on the performance of beef steers. J. Anim. Sci., 41, 1735–41.

    CAS  Google Scholar 

  • Counotte, G. H. M. and Prins, R. A. (1979). Regulation of rumen lactate metabolism and the role of lactic acid in nutritional disorders of ruminants. Vet. Sci. Commun., 2, 277–303.

    CAS  Google Scholar 

  • Counotte, G. H. M., Th. Van’t Klooster, A., Van der Kuilen, J. and Prins, R. A. (1979). An analysis of the buffer system in the rumen of dairy cattle. J. Anim. Sci., 49, 1536–44.

    PubMed  CAS  Google Scholar 

  • Craig, W. M. and Broderick, G. A. (1984). Amino acids released during protein degradation by rumen microbes. J. Anim. Sci., 58, 436–43.

    CAS  Google Scholar 

  • Croom, W. J. Jr, Froetschel, M. A. and Hagler, W. M. (1990). Cholinergic manipulation of digestive function in ruminants and other domestic livestock: a review. J. Anim. Sci., 68, 3023–32.

    PubMed  Google Scholar 

  • Croom, W. J. Jr, Bird, A. R., Black, B. L. and McBride, B. W. (1993). Manipulation of gastrointestinal nutrient delivery in livestock. J. Dairy Sci., 76, 2112–24.

    PubMed  Google Scholar 

  • Croom, W. J. Jr, Hagler, W. M. Jr, Froetschel, M. A. and Johnson, A. D. (1995). The involvement of slaframine and swainsonine in slobbers syndrome: a review. J. Anim. Sci., 73, 1499–508.

    PubMed  CAS  Google Scholar 

  • Culler, M. D., Bitman, J., Thompson, M. J. et al. (1979). Mastitis: I. In vitro antimicrobial activity of alkylamines against mastitic bacteria. J. Dairy Sci., 62, 584–95.

    PubMed  CAS  Google Scholar 

  • Cummins, K. A. and Papas, A. H. (1985). Effect of isocarbon-4 and isocarbon-5 volatile fatty acids on microbial protein synthesis and dry matter digestibility in vitro. J. Dairy Sci., 68, 2588–95.

    CAS  Google Scholar 

  • Cuthbert, N. H., Thiekett, W. S. and Smith, H. (1984). The efficacy of dietary avoparcin for improving the performance of growing-finishing beef cattle. Anim. Prod., 39, 195–200.

    Google Scholar 

  • Czerkawski, J. W. (1973). Effect of linseed oil fatty acids and linseed oil on rumen fermentation in sheep. J. Agric. Sci., 81, 517–31.

    CAS  Google Scholar 

  • Czerkawski, J. W. and Breckenbridge, G. (1975). New inhibitors of methane production by rumen micro-organisms. Experiments with animals and other practical possibilities. Br. J. Nutr., 34, 447–57.

    PubMed  CAS  Google Scholar 

  • Czerkawski, J. W. and Clapperton, J. C. (1984). Fats as energy-yielding compounds in the ruminant diet. In Fats in Animal Nutrition, ed. J. Wiseman. Butterworths, Boston, MA, pp. 249–63.

    Google Scholar 

  • Czerkawski, J. W., Blaxter, K. L. and Wainman, F. W. (1966a). The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. Br. J. Nutr., 20, 349–62.

    PubMed  CAS  Google Scholar 

  • Czerkawski, J. W., Blaxter, K. L. and Wainman, F. W. (1966b). The effect of linseed oil and of linseed oil fatty acids incorporated in the diet on the metabolism of sheep. Br. J. Nutr., 20, 485–94.

    PubMed  CAS  Google Scholar 

  • Czerkawski, J. W., Blaxter, K. L. and Wainman, F. W. (1966c). The effect of functional groups other than carboxyl on the metabolism of C18 and C12 alkyl compounds by sheep. Br. J. Nutr., 20, 495–508.

    PubMed  CAS  Google Scholar 

  • Czerkawski, J. W., Christie, W. W., Breckenridge, G. and Hunter, M. L. (1975). Changes in the rumen metabolism of sheep given increasing amounts of linseed oil in their diet. Br. J. Nutr., 34, 25–44.

    PubMed  CAS  Google Scholar 

  • Daniels, L. B., Peterson, R. L., Piper, E. L. and Rakes, J. M. (1981). Sorbitol in diet of young dairy calves. J. Dairy Sci., 64, 449–53.

    CAS  Google Scholar 

  • Daniels, L., Sparling, R. and Sprott, G. D. (1984). The bioenergetics of methanogenesis. Biochim. Biophys. Acta, 708, 113–63.

    Google Scholar 

  • Darden, D. E., Merchen, N. R., Berger, L. L. et al. (1985). Effects of avoparcin, lasalocid and monensin on sites of nutrient digestion in beef steers. Nutr. Rep. Int., 31, 979–89.

    CAS  Google Scholar 

  • Davies, A., Nwaonu, H. N., Stanier, G. and Boyle, F. T. (1982). Properties of a novel series of inhibitors of rumen methanogenesis; in vitro and in vivo experiments including growth trials on 2, 4-bis(trichloromethyl)-benzo [1,3] dioxin-6-carboxylic acid. Br. J. Nutr., 47, 565–76.

    PubMed  CAS  Google Scholar 

  • Davis, C. L. (1967). Acetate production in the rumen of cows fed either control or low-fiber, high-grain diets. J. Dairy Sci., 50, 1621–5.

    PubMed  CAS  Google Scholar 

  • Davis, C. L. (1979). The use of buffers in the rations of lactating dairy cows. In Regulation of Acid-Base Balance, ed. W. H. Hale and P. Meinhardt. Church and Dwight Inc., Piscataway, New Jersey, pp. 51–4.

    Google Scholar 

  • Davis, C. L. and Brown, R. E. (1970). Low-fat milk syndrome. In Physiology of Digestion and Metabolism in the Ruminant, ed. A. T. Phillipson. Oriel Press, Newcastle-upon-Tyne, pp. 545–65.

    Google Scholar 

  • Dawson, K. A. (1987). Mode of action of the yeast culture, Yea-Sacc, in the rumen: a natural fermentation modifier. In Biotechnology in the Feed Industry, ed. T. P. Lyons. Alltech Technical Publications, Nicholasville, Kentucky, pp. 119–25.

    Google Scholar 

  • Dawson, K. A. (1993). Current and future role of yeast culture in animal production: a review of research over the last six years. In Biotechnology in the Feed Industry, ed. T. P. Lyons. Alltech Technical Publications, Nicholasville, Kentucky, pp. 269–91.

    Google Scholar 

  • Dawson, K. A. and Boling, J. A. (1983). Monensin-resistant bacteria in the rumens of calves on monensin-containing and unmedicated diets. Appl. Environ. Microbiol., 46, 160–4.

    PubMed  CAS  Google Scholar 

  • Dawson, K. A., and Boling, J. A. (1987). Effects of potassium in concentration on the antimicrobial activities of ionophores against ruminal anaerobes. Appl. Environ. Microbiol., 53, 2863–7.

    Google Scholar 

  • Dawson, K. A., Newman, K. E. and Boling, J. A. (1990). Effects of microbial supplements containing yeast and lactobacilli on roughage-fed ruminal microbial activities. J. Anim. Sci., 68, 3392–8.

    PubMed  CAS  Google Scholar 

  • Deetz, L. E., Klopfenstein, T. J., Sindt, M. H. et al. (1990). Body weight gain of pasture cattle fed varying dosages of bambermycins. J. Anim. Sci., 68(Suppl. 1), 503(Abstract).

    Google Scholar 

  • Deetz, L. E., Kunkle, W. E., Bates, D. B. and Ellis, W. C. (1992). Body weight gain of cattle on pasture supplemented with varying dosages of bambermycins. J. Anim. Sci., 70(Suppl. 1), 281(Abstract).

    Google Scholar 

  • Dehority, B. A., Scott, H. W. and Kowalik, P. (1967). Volatile fatty acid requirements of cellulolytic rumen bacteria. J. Bacteriol., 94, 537–43.

    PubMed  CAS  Google Scholar 

  • Della-Fera, M. A. and Baile, C. A. (1984). Control of feed intake in sheep. J. Anim. Sci., 59, 1362–8.

    PubMed  CAS  Google Scholar 

  • Dellinger, C. A. and Ferry, J. G. (1984). Effect of monensin on growth and methanogenesis of Methanobacterium formicicum. Appl. Environ. Microbiol., 48, 680–2.

    PubMed  CAS  Google Scholar 

  • Demeyer, D. I. and De Graeve, K. (1991). Differences in stoichiometry between rumen and hindgut fermentation. J. Anim. Physiol. Anim. Nutr., 22, 50–61.

    Google Scholar 

  • Demeyer, D. I. and Henderickx, H. K. (1967). The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochim. Biophys. Acta, 137, 484–97.

    PubMed  CAS  Google Scholar 

  • Demeyer, D. I. and Van Nevel, C. J. (1975). Methanogenesis, an integrated part of carbohydrate fermentation, and its control. In Digestion and Metabolism in the Ruminant, ed. I. W. McDonald and A. C. I. Warner. University of New England Publishing Unit, Armidale, NSW, Australia, pp. 366–82.

    Google Scholar 

  • Demeyer, D. I. and Van Nevel, C. J. (1987). Chemical manipulation of rumen metabolism. In The Ruminant Stomach, Vol. 1, ed. L. A. A. Ooms, A. D. Degryse and R. Marsboom. The Janssen Research Foundation, Antwerp, pp. 227–50.

    Google Scholar 

  • Demeyer, D. I., Henderickx, H. K. and Van Nevel, C. J. (1967). Influence of pH on fatty acid inhibition of methane production by mixed rumen bacteria. Arch. Int. Physiol. Biochim., 75, 555–6.

    PubMed  CAS  Google Scholar 

  • Demeyer, D. I., Van Nevel, C. J., Henderickx, H. K. and Martin, J. A. (1969). The effect of unsaturated fatty acids upon methane and propionic acid in the rumen. In Energy Metabolism of Farm Animals, ed. K. L. Blaxter. Oriel Press, Newcastle-upon-Tyne, pp. 139–47.

    Google Scholar 

  • Demeyer, D., Van Nevel, C., Teller, E. and Gordeau, J. M. (1986). Manipulation of rumen digestion in relation to the level of production in ruminants. Arch. Anim. Nutr., 36, 132–43.

    CAS  Google Scholar 

  • Dennis, S. M., Nagaraja, T. G. and Bartley, E. E. (1981). Effects of lasalocid or monensin on lactate producing or using rumen bacteria. J. Anim. Sci., 52, 418–26.

    PubMed  CAS  Google Scholar 

  • Dennis, S. M., Nagaraja, T. G. and Dayton, A. D. (1986). Effect of lasalocid, monensin, and thiopeptin on rumen protozoa. Res. Vet. Sci., 41, 251–6.

    PubMed  CAS  Google Scholar 

  • Deswysen, A. G., Ellis, W. C., Pond, K. P. et al. (1987). Effects of monensin on voluntary intake, eating and ruminating behavior and rumen motility of heifers fed corn silage. J. Anim. Sci., 64, 827–34.

    PubMed  CAS  Google Scholar 

  • Devendra, C. and Lewis, D. (1974a). Fat in the ruminant diet: a review. Ind. J. Anim. Sci., 44, 917–38.

    Google Scholar 

  • Devendra, C. and Lewis, D. (1974b). The interaction between dietary lipids and fibre in the sheep. 2. Digestibility studies. Anim. Prod., 19, 67–76.

    Google Scholar 

  • Diaz, A., Avendano, M. and Escobar, A. (1993). Evaluation of Sapindus saponaria as a defaunating agent and its effects on different ruminal digestion parameters. Livest. Res. Rural Dev., 5, 1–6.

    Google Scholar 

  • Dinius, D. A., Simpson, M. E. and Marsh, P. B. (1976). Effect of monensin fed with forage on digestion and the ruminal ecosystem of steers. J. Anim. Sci., 42, 229–34.

    CAS  Google Scholar 

  • Dinusson, W. E., Danielson, R. B., Moore, B. L. and Johnson, L. J. (1979). Narasin: a feed additive for finishing steers. J. Anim. Sci., 49(Suppl. 1), 364(Abstract).

    Google Scholar 

  • Donoho, A. L. (1984). Biochemical studies on the fate of monensin in animals and in the environment. J. Anim. Sci., 58, 1528–39.

    PubMed  CAS  Google Scholar 

  • Doreau, M., Legay, F. and Bauchart, D. (1991). Effect of source and level of supplemental fat on total and ruminal organic matter and nitrogen digestion in dairy cows. J. Dairy Sci., 74, 2233–42.

    PubMed  CAS  Google Scholar 

  • Duff, G. C., Galyean, M. L. and Estell, R. E. (1990a). Effects of monensin and/or cycloheximide on in vitro dry matter disappearances of alfalfa hay, prairie hay, and a concentrate diet. J. Anim. Sci., 68(Suppl. 1), 518(Abstract).

    Google Scholar 

  • Duff, G. C., Galyean, M. L. and Branine, M. E. (1990b). Influence of ionophore adaptation on in vitro DM disappearance (IVDMD) of prairie hay or a 90% concentrate diet. J. Anim. Sci., 68(Suppl. 1), 518(Abstract).

    Google Scholar 

  • Duff, G. C., Galyean, M. L., Branine, M. E. and Hallford, D. M. (1994). Effects of lasalocid and monensin plus tylosin on serum metabolic hormones and clinical chemistry profiles of beef steers fed a 90% concentrate diet. J. Anim. Sci., 12, 1049–58.

    Google Scholar 

  • Dunlop, R. H. (1972). Pathogenesis of ruminant lactic acidosis. Adv. Vet. Sci. Comp. Med., 16, 259–80.

    PubMed  CAS  Google Scholar 

  • Durand, M. (1982). Orientation du métabolisme du rumen au moyen des additifs. Ann. Zootech., 31, 47–76.

    CAS  Google Scholar 

  • Durand, M. and Kawashima, R. (1980). Influence of minerals in rumen microbial digestion. In Digestive Physiology and Metabolism in Ruminants, ed. Y. Ruckebusch and P. Thivend. MTP Press Ltd, AVI Publishing Co., Inc., Westport, Connecticut, pp. 375–408.

    Google Scholar 

  • Durand, M. and Komisarczuk, S. (1988). Influence of major minerals on rumen microbiota. J. Nutr., 118, 249–60.

    PubMed  CAS  Google Scholar 

  • Dutton, C. J., Banks, B. J. and Cooper, C. B. (1995). Polyether ionophores. Nat. Prod. Rep., 12, 165–81.

    PubMed  CAS  Google Scholar 

  • Dye, B. E., Amos, H. E. and Froetschal, M. A. (1988). Influence of lasalocid on rumen metabolites, milk production, milk composition, and digestibility in lactating cows. Nutr. Rep. Int., 38, 101–15.

    CAS  Google Scholar 

  • Dyer, I. A., Koes, R. M., Herlugson, M. L. et al. (1980). Effect of avoparcin and monensin on performance of finishing heifers. J. Anim. Sci., 51, 843–6.

    PubMed  CAS  Google Scholar 

  • Eckles, C. H., Williams, V. M., Wilbur, J. W. et al. (1924). Yeast as a supplementary feed for calves. J. Dairy Sci., 7, 421–39.

    CAS  Google Scholar 

  • Edwards, I. E. (1991). Practical uses of yeast culture in beef production: insight into its mode of action. In Biotechnology in the Feed Industry, ed. T. P. Lyons. Alltech Technical Publications, Nicholasville, Kentucky, pp. 51–65.

    Google Scholar 

  • Eicher-Pruiett, S. D., Morrill, J. L., Nagaraja, T. G. et al. (1992). Response of young dairy calves with lasalocid delivery varied in food sources. J. Dairy Sci., 75, 857–62.

    PubMed  CAS  Google Scholar 

  • Eijssen, A. F. M. M., Barry, T. N. and Brookes, I. M. (1990). The effect of pyromellitic diimide upon the rumen fermentation of sheep fed a forage diet. Anim. Fd Sci. Technol., 28, 145–53.

    CAS  Google Scholar 

  • El Hassan, S. M., Newbold, C. J. and Wallace, R. J. (1993). The effect of yeast in the rumen and the requirement for viable yeast cells. Anim. Prod., 54, 504(Abstract).

    Google Scholar 

  • El Hassan, S. M., Newbold, C. J., Edwards, I. E. et al. (1996). Effect of yeast culture on rumen fermentation, microbial protein flow from the rumen and live weight gain in bulls given high cereal diets. Anim. Prod., 62, 43–8.

    Google Scholar 

  • El Jack, E. M., Fallon, R. J. and Harte, F. J. (1986). Effect of avoparcin, flavomycin, and monensin inclusion in a calf concentrate diet on calf performance. Irish J. Agric. Res., 25, 197–204.

    Google Scholar 

  • Elliot, R., Ash, A. J., Calderen-Cortes, F. et al. (1987). The influence of anaerobic fungi on rumen volatile fatty acid concentrations in vivo. J. Agric. Sci. (Camb.), 109, 13–17.

    Google Scholar 

  • Elmeddah, Y., Doreau, M. and Michalet-Doreau, B. (1991). Interaction of lipid supply and carbohydrates in the diet of sheep with digestibility and ruminai digestion. J. Agric. Sci. (Camb.), 116, 437–45.

    CAS  Google Scholar 

  • Elsasser, T. H. (1984). Potential interactions of ionophore drugs with divalent cations and their function in the animal body. J. Anim. Sci., 59, 845–53.

    PubMed  CAS  Google Scholar 

  • Emery, R. S. and Brown, L. D. (1961). Effect of feeding sodium and potassium bicarbonate on milk fat, rumen pH, and volatile fatty acid production. J. Dairy Sci., 44, 1899–902.

    Google Scholar 

  • Erasmus, L. J., Botha, P. M. and Kistner, A. (1992). Effect of yeast culture supplementation on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. J. Dairy Sci., 75, 3056–65.

    PubMed  CAS  Google Scholar 

  • Erdman, R. A. (1988). Dietary buffering requirements of the lactating dairy cow: a review. J. Dairy Sci., 71, 3246–66.

    Google Scholar 

  • Erdman, R. A., Hemken, R. W. and Bull, L. S. (1982). Dietary sodium bicarbonate and magnesium oxide for early postpartum lactating dairy cows: effects on production, acid-base metabolism, and digestion. J. Dairy Sci., 65, 712–31.

    PubMed  CAS  Google Scholar 

  • Evans, E. (1981). An evaluation of the relationships between dietary parameters and rumen solid turnover rate. Can. J. Anim. Sci., 61, 97–103.

    Google Scholar 

  • Fahey, G. C. Jr, Bourquin, L. D., Titgemeyer, E. C. and Atwell, D. G. (1993). Postharvest treatment of fibrous feedstuffs to improve their nutritive value. In Forage Cell Wall Structure and Digestibility, ed. H. G. Jung, D. R. Buxton, R. D. Hatfield and J. Ralph. ASA-CSSA-SSSA, Madison, WI, pp. 717–66.

    Google Scholar 

  • Fallon, R. J., El-Jack, E. M., Harte, F. J. and Drenna, M. J. (1986). Effects on calf performance of including flavomycin and salinomycin alone and combined in a calf concentrate diet. Irish J. Agric. Res., 25, 205–12.

    CAS  Google Scholar 

  • Faulkner, D. B., Klopfenstein, T. J., Trotter, T. N. and Britton, R. A. (1985). Monensin effects on digestibility ruminal protein escape and microbial protein synthesis on high-fiber diets. J. Anim. Sci., 61, 654–60.

    PubMed  CAS  Google Scholar 

  • Ferguson, K. A. (1975). The protection of dietary proteins and amino acids against microbial fermentation in the rumen. In Digestion and Metabolism in the Ruminant, ed. I. W. McDonald and A. C. I. Warner. University of New England Publishing, Unit, Armidale, NSW, Australia, pp. 448–64.

    Google Scholar 

  • Ferlay, A. and Doreau, M. (1992). Influence of method of administration of rapeseed oil in dairy cows. 1. Digestion of nonlipid components. J. Dairy Sci., 75, 3020–7.

    PubMed  CAS  Google Scholar 

  • Ferlay, A., Legay, F., Bauchart, D. et al. (1992). Effect of a supply of raw or extruded rapeseeds on digestion in dairy cows. J. Anim. Sci., 70, 915–23.

    PubMed  CAS  Google Scholar 

  • Fiems, L. O. (1994). The use of yeasts in practical diets for ruminants. In Microorganisms and Enzyme Preparations in Animal Nutrition, ed. J. I. R. Castanon. Directorate-General for Agriculture, European Commission, Brussels, pp. 159–73.

    Google Scholar 

  • Fiems, L. O., Cottyn, B. G., Boucque, C. H. V. et al. (1990). Effect of virginiamycin on in vivo digestibility, rumen fermentation and nitrogen balance. Arch. Anim. Nutr., Berlin, 40, 483–9.

    CAS  Google Scholar 

  • Firkins, J. L., Weiss, W. P., Eastridge, M. L. and Hull, B. L. (1990). Effects of feeding fungal culture extract and animal-vegetable fat on degradation of hemicellulose and on ruminal bacterial growth in heifers. J. Dairy Sci., 73, 1812–22.

    PubMed  CAS  Google Scholar 

  • Flachowsky, G., Richter, G. H., Ochrimenko, W. I. and Matthey, M. (1990). The effect of avoparcin on apparent digestibility, characteristics of rumen fermentation and fattening and slaughter output of growing cattle. Arch. Anim. Nutr., 40, 991–1004.

    CAS  Google Scholar 

  • Fogarty, W. M. and Kelly, C. T. (1979). Developments in microbial extracellular enzymes. In Topics in Enzyme and Fermentation Biotechnology, ed. A. Wiseman. John Wiley, Chichester, pp. 45–102.

    Google Scholar 

  • Fondevila, M., Newbold, C. J., Hotten, P. M. and Ørskov, E. R. (1990). A note on the effect of Aspergillus oryzae fermentation extract on the rumen fermentation of sheep fed straw. Anim. Prod., 51, 422–5.

    Google Scholar 

  • Fontenot, J. P. and Huchette, H. M. (1993). Feeding sorbitol alone or in combination with monensin to finishing cattle. J. Anim. Sci., 71, 545–51.

    PubMed  CAS  Google Scholar 

  • Forsberg, C. W., Lovelock, L. K. A., Krumholz, L. and Buchanan-Smith, J. G. (1984). Protease activities of rumen protozoa. Appl. Environ. Microbiol., 47, 101–10.

    PubMed  CAS  Google Scholar 

  • Fotouhi, N. and Jenkins, T. C. (1992). Ruminal biohydrogenation of linoleoyl methionine and calcium linoleate in sheep. J. Anim. Sci., 70, 3067–74.

    Google Scholar 

  • Froetschel, M. A., Croom, W. J. Jr, Gaskins, H. R. et al. (1983). Effects of avoparcin on ruminal propionate production and amino acid degradation in sheep fed high and low fiber diets. J. Nutr., 113, 1355–62.

    PubMed  CAS  Google Scholar 

  • Fronk, T. J. and Schultz, C. H. (1979). Oral nicotinic acid as a treatment for ketosis. J. Dairy Sci., 62, 1804–7.

    PubMed  CAS  Google Scholar 

  • Frumholtz, P. P., Newbold, C. J. and Wallace, R. J. (1989). Influence of Aspergillus oryzae fermentation extract on the fermentation of a basal ration in the rumen simulation technique (Rusitec). J. Agri. Sci. (Camb.), 113, 169–72.

    CAS  Google Scholar 

  • Fulghum, R. S. and Moore, W. E. C. (1963). Isolation, enumeration, and characteristics of proteolytic ruminal bacteria. J. Bacteriol., 85, 808–15.

    PubMed  CAS  Google Scholar 

  • Fulghum, R. S., Baldwin, B. B. and Williams, P. P. (1968). Antibiotic susceptibility of anaerobic bacteria. Appl. Microbiol., 16, 301–7.

    PubMed  CAS  Google Scholar 

  • Fuller, J. R. and Johnson, D. E. (1981). Monensin and lasalocid effects on fermentation in vitro. J. Anim. Sci., 53, 1574–80.

    CAS  Google Scholar 

  • Fulton, W. R., Klopfenstein, T. J. and Britton, R. A. (1979). Adaptation to high concentrate diets by beef cattle. Effect of ruminal pH alteration on rumen fermentation and voluntary intake of wheat diets. J. Anim. Sci., 49, 785–9.

    CAS  Google Scholar 

  • Galbraith, H. and Miller, T. B. (1973). Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J. Appl. Bacteriol., 36, 659–75.

    PubMed  CAS  Google Scholar 

  • Galbraith, H., Miller, T. B., Paton, A. and Thompson, J. K. (1971). Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J. Appl Bacteriol., 34, 803–13.

    PubMed  CAS  Google Scholar 

  • Galitzer, S. J., Kruckenberg, S. M. and Kidd, J. R. (1986). Pathologic changes associated with experimental lasalocid and monensin toxicosis in cattle. Am. J. Vet. Res., 47, 2624–6.

    PubMed  CAS  Google Scholar 

  • Gallo, G. F. and Berg, J. L. (1995). Efficacy of a feed additive antibacterial combination for improving feedlot cattle performance and health. Can. Vet. J., 36, 223–9.

    PubMed  CAS  Google Scholar 

  • Galyean, M. L. and Hubbert, M. E. (1989). Rationale for use and selection of ionophores in ruminant nutrition. In Proceedings of the Southwest Nutrition and Management Conference, University of Arizona, Tucson, AZ, pp. 64–81.

    Google Scholar 

  • Galyean, M. L., Malcolm-Callis, K. J., Gracia, D. R. and Pulsipher, G. D. (1992a). Effect of varying the pattern of feed consumption on performance by programmed-fed beef steers. Clayton Livest. Res. Center Prog. Rep., 78, 1–3.

    Google Scholar 

  • Galyean, M. L., Malcolm, K. J. and Duff, G. C. (1992b). Performance of feedlot steers fed diets containing laidlomycin propionate or monensin plus tylosin, and effects of laidlomycin propionate concentration on intake patterns and ruminal fermentation in beef steers during adaptation to a high-concentrate diet. J. Anim. Sci., 70, 2950–8.

    PubMed  CAS  Google Scholar 

  • Gates, R. N., Roland, L. T., Wyatt, W. E. et al. (1989). Dose-response relationship of tetronasin administered to grazing steers. J. Anim. Sci., 67, 3419–24.

    PubMed  CAS  Google Scholar 

  • Gaynor, P. J., Waldo, D. R., Capuco, A. V. et al. (1995). Milk fat depression, the glucogenic theory, and trans-C18:1 fatty acids. J. Dairy Sci., 78, 2008–15.

    PubMed  CAS  Google Scholar 

  • Geay, Y., Richet, E., Ba, S. and Thivend, P. (1992). Effect of feeding sorbitol associated with different sources and amounts of nitrogen on growth, digestion, and metabolism in young bulls. Anim. Fd Sci. Technol., 36, 255–73.

    CAS  Google Scholar 

  • Gibson, M. L., Preston, R. L., Pritchard, R. H. and Goodall, S. R. (1985). Effect of sarsaponin and monensin on ruminal ammonia levels and in vitro dry matter digestibilities. J. Anim. Sci., 61(Suppl. 1), 492(Abstract).

    Google Scholar 

  • Gilliland, S. E., Bruce, B. B., Bush, L. J. and Staley, T. E. (1980). Comparison of two strains of Lactobacillus acidophilus as dietary adjuncts for young calves. J. Dairy Sci., 60, 1105 (Abstract).

    Google Scholar 

  • Girard, C. L, Chiquette, J. and Matte, J. J. (1994). Concentrations of folates in ruminal content of steers: responses to a dietary supplement of folic acid in relation with the nature of the diet. J. Anim. Sci., 72, 1023–8.

    PubMed  CAS  Google Scholar 

  • Girard, D., Jones, C. R. and Dawson, K. A. (1993). Lactic acid utilization in rumen-simulating cultures receiving a yeast culture supplement. J. Anim. Sci., 71(Suppl. 1), 288(Abstract).

    Google Scholar 

  • Girard, I. D. and Dawson, K. A. (1995). Stimulation of ruminal bacteria by different fractions derived from cultures of Saccharomyces cerevisiae strain 1026. J. Anim. Sci., 73(Suppl. 1), 264(Abstract).

    Google Scholar 

  • Godfrey, S. I., Rowe, J. B., Speijers, E. J. and Toon, W. (1993). Lupins, barley, or barley plus virginiamycin as supplements for sheep at different feeding intervals. Aust. J. Exp. Agric., 33, 135–40.

    CAS  Google Scholar 

  • Goetsch, A. L. and Owens, F. N. (1985). Effects of sarsaponin on digestion and passage rates in cattle fed medium to low concentrate. J. Dairy Sci., 68, 2377–84.

    PubMed  CAS  Google Scholar 

  • Gomez, L., Hillaire, M. C. and Jouany, J. P. (1990). In vitro study (RUSITEC) of the action of abierixin, a new ionophore antibiotic, on the end products of fermentation and the degradation of nitrogen in the rumen. Arch. Anim. Nutr., 40, 229–38.

    CAS  Google Scholar 

  • Gomez, L., Bogaert, C., Jouany, J. P. and Lassalas, B. (1991). The influence of lasalocid and cationomycin on nitrogen digestion in sheep; comparison of methods for estimating microbial nitrogen. Can. J. Anim. Sci., 71, 389–99.

    CAS  Google Scholar 

  • Gomez-Alarcon, R. A. G. (1988). Effects of Aspergillus oryzae on milk production, feed utilization and rumen fermentation in lactating dairy cows. PhD, Dissertation, University of Arizona, Tucson.

    Google Scholar 

  • Gomez-Alarcon, R., Dudas, C. and Huber, J. T. (1990). Influence of cultures of Aspergillus oryzae on rumen and total tract digestibility of dietary components. J. Dairy Sci., 73, 703–10.

    PubMed  CAS  Google Scholar 

  • Goodall, S. R. and Matsushima, J. K. (1979). Sarsaponin effects upon ruminal VFA concentrations and weight gains of feedlot cattle. J. Anim. Sci., 49(Suppl. 1), 371 (Abstract).

    Google Scholar 

  • Goodrich, R. D., Garrett, J. E., Gast, D. R. et al. (1984). Influence of monensin on the performance of cattle. J. Anim. Sci., 58, 1484–98.

    PubMed  CAS  Google Scholar 

  • Gorosito, A. R., Russell, J. B. and VanSoest, P. J. (1985). Effect of carbon-4 and carbon-5 volatile fatty acids on digestion of plant cell wall in vitro. J. Dairy Sci., 68, 840–7.

    CAS  Google Scholar 

  • Gottschall, C. W., Wang, R. and Kingston, D. G. I. (1988). Virginiamycin metabolism in cattle rumen fluid. Drug Metab. Disp., 16, 804–12.

    CAS  Google Scholar 

  • Grant, R. J., Moeller, M. W., Kleft, R. H. et al. (1974). Performance of beef cattle fed flavomycin. J. Anim. Sci., 39, 998(Abstract).

    Google Scholar 

  • Gray, W. and Ryan, J. P. (1989). Effect of yeast culture on volatile fatty acid levels in ovine rumen fluid incubated with oats, barley and hay. Biochem. Soc. Trans., 17, 390–2.

    CAS  Google Scholar 

  • Greene, L. W., Schelling, G. T. and Byers, F. M. (1986). Effect of dietary monensin and potassium on apparent absorption of magnesium and other macroelements in sheep. J. Anim. Sci., 63, 1960–7.

    PubMed  CAS  Google Scholar 

  • Grenet, E., Fonty, G., Jamot, J. and Bonnemy, F. (1989). Influence of diet and monensin on development of anaerobic fungi in the rumen, duodenum, cecum and faces of cows. Appl. Environ. Microbiol., 55, 2360–4.

    PubMed  CAS  Google Scholar 

  • Grigat, G. A. and Mathison, G. W. (1982). Thiamin supplementation of an all-concentrate diet for feedlot steers. Can. J. Anim. Sci., 62, 807–19.

    CAS  Google Scholar 

  • Grigat, G. A. and Mathison, G. W. (1983). Thiamin and magnesium supplementation of all-concentrate diets for feedlot steers. Can. J. Anim. Sci., 61, 117–31.

    Google Scholar 

  • Grummer, R. R. (1988). Influence of prilled fat and calcium salt of palm oil fatty acids on ruminal fermentation and nutrient digestibility. J. Dairy Sci., 71, 117–23.

    PubMed  CAS  Google Scholar 

  • Grummer, R. R., Luck, L. L. and Barmore, J. A. (1993). Rumen fermentation and lactation performance of cows fed roasted soybeans and tallow. J. Dairy Sci., 76, 2674–81.

    PubMed  CAS  Google Scholar 

  • Gunter, S. A., Krysl, L. J., Judkins, M. B. et al. (1990). Influence of branched-chain fatty acid supplementation on voluntary intake, site and extent of digestion, ruminal fermentation, digesta kinetics and microbial protein synthesis in beef heifers consuming grass hay. J. Anim. Sci., 68, 2885–92.

    PubMed  CAS  Google Scholar 

  • Ha, J. K., Emerick, R. J. and Embry, L. B. (1983). In vitro effect of pH variations on rumen fermentation, and in vivo effects of buffers in lambs before and after adaptation to high concentrate diets. J. Anim. Sci., 56, 698–706.

    PubMed  CAS  Google Scholar 

  • Hadjipanayiotou, M., Harrison, D. G. and Armstrong, D. G. (1982). The effects upon digestion in sheep of the dietary inclusion of additional salivary salts. J. Sci. Fd Agric., 33, 1057–62.

    CAS  Google Scholar 

  • Halpin, C., Foxon, G. A. and Fentem, P. A. (1995). Transgenic plants with improved energy characteristics. In Biotechnology in Animal Feeds and Animal Feeding, ed. R. J. Wallace and A. Chesson. VCH Publishers, Weinheim, pp. 279–94.

    Google Scholar 

  • Hannah, S. M. and Stern, M. D. (1985). Effect of supplemental niacin or niacinamide and soybean source on ruminal bacterial fermentation in continuous culture. J. Anim. Sci., 61, 1253–63.

    PubMed  CAS  Google Scholar 

  • Hanson, T. L. and Klopfenstein, T. J. (1979). Monensin, protein source and protein levels for growing steers. J. Anim. Sci., 48, 474–9.

    CAS  Google Scholar 

  • Harfoot, C. G. (1978). Lipid metabolism in the rumen. Prog. Lipid Res., 17, 21–54.

    PubMed  CAS  Google Scholar 

  • Harfoot, C. G., Crouchman, M. L., Noble, R. C. and Moore, J. H. (1974). Competition between food particles and rumen bacteria in the uptake of long-chain fatty acids and triglycerides. J. Appl. Bacteriol., 37, 633–41.

    PubMed  CAS  Google Scholar 

  • Harmon, D. L. (1991). Dietary influences on carbohydrates and small intestinal starch hydrolysis capacity in ruminants. J. Nutr., 122, 203–10.

    Google Scholar 

  • Harmon, D. L. and Avery, T. B. (1987). Effects of dietary monensin and sodium propionate on net nutrient flux in steers fed a high-concentrate diet. J. Anim. Sci., 65, 1610–16.

    PubMed  CAS  Google Scholar 

  • Harmon, D. L., Avery, T. B., Huntington, G. B. and Reynolds, P. J. (1988). Influence of ionophore addition to roughage and high-concentrate diets on partial blood flux and net nutrient flux in cattle. Can. J. Anim. Sci., 68, 419–29.

    CAS  Google Scholar 

  • Harrison, D. G., Beever, D. E., Thomson, D. J. and Osbourn, D. F. (1975). Manipulation of rumen fermentation in sheep by increasing the rate of flow of water from the rumen. J. Agric. Sci. (Camb.), 85, 93–101.

    Google Scholar 

  • Harrison, D. G., Beever, D. E., Thomason, D. J. and Osbourn, D. F. (1976). Manipulation of fermentation in the rumen. J. Sci. Fd Agric., 27, 617–20.

    CAS  Google Scholar 

  • Harrison, G. A., Hemken, R. W., Dawson, K. A. et al. (1988). Influence of addition of yeast culture supplement to diets of lactating cows on ruminal fermentation and microbial populations. J. Dairy Sci., 71, 2967–75.

    PubMed  CAS  Google Scholar 

  • Harvey, R. W., Spears, J. W. and Darden, D. E. (1988). Effects of lysocellin on performance, ruminal and plasma characteristics of growing cattle. J. Anim. Sci., 66, 1036–41.

    PubMed  CAS  Google Scholar 

  • Hatch, C. F., Perry, T. W., Mohler, M. T. and Beeson, W. M. (1972). Effect of added fat with graded levels of calcium to urea-containing rations for beef cattle. J. Anim. Sci., 34, 483–7.

    Google Scholar 

  • Hawkridge, J. (1980). Monensin dose-response relationship under European conditions. European Congress for Improved Beef Productivity, Session III, Glanco Animal Health, UK, pp. 1–8.

    Google Scholar 

  • Hayes, B. W., Mitchell, Jr, G. C., Little, C. O. and Bradley, N. W. (1966). Concentrations of B-vitamins in ruminal fluid of steers fed different levels and physical forms of hay and grain. J. Anim. Sci., 25, 539–42.

    CAS  Google Scholar 

  • Hays, V. W. (1978). The role of antibiotics in efficient livestock production. In Nutrition and Drug Interrelations, ed. J. N. Hathcock and J. Coon. Academic Press, New York, pp. 545–75.

    Google Scholar 

  • Hazlewood, G. and Edwards, R. (1981). Proteolytic activities of a rumen bacterium, Bacteroides ruminicola R8/4. J. Gen. Microbiol., 125, 11–15.

    PubMed  CAS  Google Scholar 

  • Headon, D. R., Buggle, K., Nelson, A. and Killeen, G. (1991). Glycofractions of the yucca plant and their role in ammonia control. In Biotechnology in the Feed Industry, ed. T. P. Lyons. Altech, Inc., Nicholasville, pp. 95–108.

    Google Scholar 

  • Hedde, R. D. (1984). Nutritional aspect of virginiamycin in feeds. In Antimicrobials and Agriculture, ed. M. Woodbine. Butterworths, Boston, pp. 359–68.

    Google Scholar 

  • Helmer, L. G. and Bartley, E. E. (1971). Progress in the utilization of urea as a protein replacer for ruminants. A review. J. Dairy Sci., 54, 1–27.

    Google Scholar 

  • Henderson, C. (1973). The effects of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci. (Comb.), 81, 107–12.

    CAS  Google Scholar 

  • Henderson, C., Stewart, C. S. and Hine, R. S. (1977). The effect of added tallow on the rumen digestion rate and microbial populations of sheep fed dried grass. Proc. Nutr. Soc., 36, 148A.

    PubMed  CAS  Google Scholar 

  • Henderson, C., Stewart, C. S. and Nekrep, F. V. (1981). The effect of monensin on pure and mixed cultures of rumen bacteria. J. Appl. Bacterioi, 51, 159–69.

    CAS  Google Scholar 

  • Herod, E. L., Bechtle, R. M., Bartley, E. E. and Dayton, A. D. (1978). Buffering ability of several compounds in vitro and the effect of a selected buffer combination on ruminal acid production in vitro. J. Dairy Sci., 61, 1114–22.

    CAS  Google Scholar 

  • Hibbard, B., Robinson, J. A., Greening, R. C. et al. (1993). The effect of route of administration of isolate 407A (UC-12497) on feed intake and selected ruminal variables of beef steers in an acute acidosis inappetence model. In Proceedings of 22nd Biennial Conference on Rumen Function, Chicago, Illinuis, p. 19(Abstract).

    Google Scholar 

  • Hibbard, B., Peters J. P., Chester, J. T. et al. (1995a). The effect of slaframine on salivary output and subacute and acute acidosis in growing beef steers. J. Anim. Sci., 73, 516–25.

    PubMed  CAS  Google Scholar 

  • Hibbard, B., Mosley, W. M., Robinson, J. A. and Boucher, J. F. (1995b). The effect of daily slaframine injection on salivary score, feed intake, ruminal pH, and circulating concentrations of somatotropin and insulin-like growth factor I. J. Anim. Sci., 73, 526–33.

    PubMed  CAS  Google Scholar 

  • Higginbotham, G. E. and Bath, D. L. (1993). Evaluation of Lactobacillus fermentation cultures in calf feeding systems. J. Dairy Sci., 76, 615–20.

    Google Scholar 

  • Hillaire, M. C., Gomez, L. and Jouany, J. P. (1990). In vitro study of the response of rumen microorganisms to different doses of abierixin, a new antibiotic ionophore, according to the nature of nitrogen supplies. Arch. Anim. Nutr., 40, 65–74.

    CAS  Google Scholar 

  • Hillman, K., Lloyd, D. and Williams, A. G. (1985). Use of a portable quadrupole mass spectrometer for the measurement of dissolved gas concentrations in ovine rumen liquor in situ. Curr. Microbiol., 12, 335–40.

    CAS  Google Scholar 

  • Hino, T. (1981). Action of monensin on rumen protozoa. Jap. J. Zootech. Sci., 52, 171–9.

    CAS  Google Scholar 

  • Hino, T. and Russell, J. B. (1985). Effect of reducing-equivalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts. Appl. Environ. Microbiol., 50, 1368–74.

    PubMed  CAS  Google Scholar 

  • Hino, T., Takeshi, K., Kanda, M. and Kamazawa, S. (1993a). Effects of aibellin, a novel peptide antibiotic on rumen fermentation in vitro. Dairy Sci., 76, 2213–31.

    CAS  Google Scholar 

  • Hino, T., Andoh, N. and Ohgi, H. (1993b). Effects of /3-carotene and a-tocopherol on rumen bacteria in the utilization of long chain fatty acids and cellulose. J. Dairy Sci., 76, 600–5.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. and Wallace, R. J. (1982). Microbial ecology and activities in the rumen. CRC Crit. Rev. Microbiol., 9, 253–20.

    CAS  Google Scholar 

  • Hogan, J. P. and Weston, R. H. (1969). The effect of antibiotics on ammonia accumulation and protein digestion in the rumen. Aust. J. Agric. Res., 20, 339–46.

    CAS  Google Scholar 

  • Hoover, W. H. (1986). Chemical factors involved in ruminal fiber digestion. J. Dairy Sci., 69, 2755–66.

    PubMed  CAS  Google Scholar 

  • Horn, G. W., Mader, T. L., Armbruster, S. L. and Frahm, R. R. (1981). Effect of monensin on ruminal fermentation, forage intake and weight gains of wheat pasture stocker cattle. J. Anim. Sci., 52, 447–54.

    PubMed  CAS  Google Scholar 

  • Horton, G. M. J. and Nicholson, H. H. (1980). Rumen metabolism and feedlot responses by steers fed tylosin and monensin. Can. J. Anim. Sci., 61, 919–24.

    Google Scholar 

  • Huber, J. T., Sullivan, J., Taylor, B. et al. (1989). Effect of feeding Yea-sacc1026 on milk production and related responses in a commercial dairy herd in Arizona. In Biotechnology in the Feed Industry, ed. T. P. Lyons. Alltech Technical Publications, Nicholasville, Kentucky, pp. 35–8.

    Google Scholar 

  • Hudd, D. L. (1983). The addition of antibiotics to feedingstuffs. In Pharmacological Basis of Large Animal Medicine, ed. J. A. Bogan, P. Lees and A. T. Yoxall. Blackwell Scientific, Boston, pp. 107–28.

    Google Scholar 

  • Huffman, R. P., Stock, R. A., Sindt, M. H. and Shain, D. H. (1992). Effect of fat type and forage level on performance of finishing cattle. J. Anim. Sci., 70, 3889–98.

    PubMed  CAS  Google Scholar 

  • Huhtanen, P. (1991). Effects of yeast culture supplement on digestion of nutrients and rumen fermentation in cattle fed on a grass silage barley diet. J. Agric. Sci. Finland, 64, 443–53.

    Google Scholar 

  • Hungate, R. E., Fletcher, D. W. and Dyer, I. A. (1955). Effects of chlortetracycline feeding on bovine rumen microorganisms. J. Anim. Sci., 14, 997–1002.

    CAS  Google Scholar 

  • Huntington, G. B. (1994). Ruminant starch utilization progress has been extensive. Feedstuffs, 6 June, p. 16.

    Google Scholar 

  • Huntington, G. B., Emerick, R. J. and Embry, L. B. (1977). Sodium bentonite or sodium bicarbonate as acids in feeding high concentrate diets to lambs. J. Anim. Sci., 45, 804–11.

    PubMed  CAS  Google Scholar 

  • Hussain, I. and Cheeke, P. R. (1995). Effect of dietary Yucca schidigera on rumen and blood profiles fed concentrate or roughage based diets. Anim. Fd Sci. Technol., 51, 231–42.

    CAS  Google Scholar 

  • Ikwuegbu, O. A. and Sutton, J. D. (1982). The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Br. J. Nutr., 48, 365–75.

    PubMed  CAS  Google Scholar 

  • Ilan, D., Ben-Aster, A., Holzer, Z. et al. (1981). Effect of monensin supplementation on growth, feed digestibility and utilization in young calves. Anim. Prod., 32, 125–31.

    CAS  Google Scholar 

  • Ingledew, W. M. and Jones, G. A. (1982). The fate of live brewers yeast slurry in bovine rumen fluid. J. Inst. Brewing, 88, 18–20.

    Google Scholar 

  • Jacques, K. A., Axe, D. E., Harris, T. R. etal. (1986). Effect of sodium bicarbonate and sodium bentonite on digestion, solid and liquid flow, and ruminal fermentation characteristics of forage sorghum silage-based diets fed to steers. J. Anim. Sci., 63, 923–32.

    PubMed  CAS  Google Scholar 

  • Jaquette, R. D., Dennis, R. J. and Calson, J. A. (1988). Effect of feeding viable Lactobacillus acidophilus (BT1386) on performance of lactating dairy cows. J. Dairy Sci., 71, 219 (Abstract).

    Google Scholar 

  • Jarrell, K. F. and Sprott, G. D. (1983). The effects of ionophores and metabolic inhibitors on methanogenesis and energy-related properties of Methanobacterium bryantii. Arch. Biochem. Biophys., 225, 33–41.

    PubMed  CAS  Google Scholar 

  • Jasaitis, D. K., Wohlt, J. E. and Evans, J. L. (1987). Influence of fed ion content on buffering capacity of ruminant feedstuffs in vitro. J. Dairy Sci., 70, 1391–403.

    CAS  Google Scholar 

  • Jenkins, T. C. (1987). Effect of fats and fatty acid combinations in ruminal fermentation in semi-continuous in vitro cultures. J. Anim. Sci., 64, 1526–32.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. C. (1990). Nutrient digestion, ruminal fermentation, and plasma lipids in steers fed combinations of hydrogenated fat and lecithin. J. Dairy Sci., 73, 2934–9.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. C. (1993). Lipid metabolism in the rumen. J. Dairy Sci., 76, 3851–63.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. C. (1994). Regulation of lipid metabolism in the rumen. J. Nutr., 124, 1372S–6S.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. C. and Fotouhi, N. (1990). Effects of lecithin and corn oil on site of digestion, ruminal fermentation and microbial protein synthesis in sheep. J. Anim. Sci., 68, 460–68.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. C. and Jenny, B. F. (1989). Effect of hydrogenated fat on feed intake, nutrient digestion, and lactation performance of dairy cows. J. Dairy Sci., 72, 2316–24.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. C. and Jenny, B. F. (1992). Nutrient digestion and lactation performance of dairy cows fed combinations of prilled fat and canola oil. J. Dairy Sci., 75, 796–803.

    PubMed  CAS  Google Scholar 

  • Jenkins, T. C. and Palmquist, D. L. (1982). Effect of added fat and calcium on in vitro formation of insoluble fatty acid soaps and cell wall digestibility. J. Anim. Sci., 55, 957–63.

    CAS  Google Scholar 

  • Jenkins, T. C. and Palmquist, D. L. (1984). Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. J. Dairy Sci., 67, 978–86.

    PubMed  CAS  Google Scholar 

  • Jensen, R. H., Deane, H. M., Cooper, L. J. et al. (1954). The rumenitis-liver abscess complex in beef cattle. Am. J. Vet. Res., 15, 202–16.

    PubMed  CAS  Google Scholar 

  • Jimenez, A. A. (1985). Sodium sesquicarbonate’s effectiveness as alkalizer tested. Feedstuffs, 28 January, 10–11.

    Google Scholar 

  • Johnson, A. B., Hubbert, M. E., Ferguson, P. W. and Peterson, L. A. (1988). The effect of alternating ionophores on feedlot performance of cattle, a pooled analysis. J. Anim. Sci., Suppl. 1, 504(Abstract).

    Google Scholar 

  • Johnson, D. E. (1972). Effects of a hemiacetal of chloral and starch on methane production and energy balance of sheep fed a pelleted diet. J. Anim. Set., 35, 1064–8.

    CAS  Google Scholar 

  • Johnson, D. E. (1974). Adaptational responses in nitrogen and energy balance of lambs fed a methane inhibitor. J. Anim. Sci., 38, 154–7.

    PubMed  CAS  Google Scholar 

  • Johnson, D. E., Wood, A. S., Stone, J. B. and Moran, E. T. (1972). Some effects of methane inhibition in ruminants (steers). Can. J. Anim. Sci., 52, 703–12.

    CAS  Google Scholar 

  • Johnson, D. E., Hill, T. M., Ward, G. M. et al. (1991). New perspectives on ruminant methane emissions. In Energy Metabolism of Farm Animals, ed. C. Wenk and M. Boessinger. ETH, Zurich, pp. 376–9.

    Google Scholar 

  • Johnson, R. J., Herlugson, M. L., Bola Ojikutu, L. et al. (1979). Effect of avoparcin and monensin on feedlot performance of beef cattle. J. Anim. Sci., 48, 1338–42.

    CAS  Google Scholar 

  • Jouany, J. P. (1994). Manipulation of microbial activity in the rumen. Arch. Anim. Nutr., 46, 133–53.

    CAS  Google Scholar 

  • Jouany, J. P. and Thivend, P. (1986). In vitro effects of avoparcin on protein degradability and rumen fermentation. Anim. Fd Sci. Technol., 15, 215–29.

    CAS  Google Scholar 

  • Joyner, A. E., Brown, L. J., Fogg, T. J. and Rossi, R. T. (1979). Effect of monensin on growth, feed efficiency, and energy metabolism of lambs. J. Anim. Sci., 48, 1065–9.

    CAS  Google Scholar 

  • Jukes, T. H. (1977). The history of the ‘antibiotic growth effect’. Fed. Proc., 37, 2514–18.

    Google Scholar 

  • Jukes, T. H. and Williams, W. L. (1953). Nutritional effects of antibiotics. Pharmacol. Rev., 5, 381–420.

    PubMed  CAS  Google Scholar 

  • Katz, M. P., Nagaraja, T. G. and Fina, L. R. (1986). Ruminal changes in monensin-and lasalocid-fed cattle grazing bloat-provocative alfalfa pasture. J. Anim. Sci., 63, 1246–57.

    PubMed  CAS  Google Scholar 

  • Kegley, E. B., Harvey, R. W., Spears, J. W. and Crickenberger, R. G. (1990). The effects of lysocellin and varying calcium levels on performance and ruminal and plasma characteristics of growing beef steers fed corn silage. J. Anim. Sci., 68, 483–9.

    PubMed  CAS  Google Scholar 

  • Kellems, R. O., Weaver, F. W., Baysinger, C. M. and Wallentine, M. V. (1989). The effect of applying 57 commercial lipid sources at 5% and 10% rates on rumen in vitro disappearance of dry matter and starch components of barley. Proc. South. Sect. Am. Soc. Anim. Sci., 40, 410–4.

    Google Scholar 

  • Kepler, C. R., Tucker, W. P. and Tore, S. B. (1970). Biohydrogenation of unsaturated fatty acids IV. Substrate specificity and inhibition of linoleate Δ12-cis, Δ11-trans isomerase from Butyrivibrio fibrisolvens. J. Biol. Chem., 245, 3612–20.

    PubMed  CAS  Google Scholar 

  • Kilmer, L. H., Muller, L. D. and Snyder, T. J. (1981). Addition of sodium bicarbonate to rations of postpartum dairy cows: physiological and metabolic effects. J. Dairy Sci., 64, 2357–69.

    PubMed  CAS  Google Scholar 

  • Kim, D. Y., Figueroa, M. R., Dawson, D. P. et al. (1992). Efficacy of supplemental viable yeast culture with or without Aspergillus oryzae on nutrient digestibility and milk production in early to midlactation dairy cows. J. Dairy Sci., 75, 206.

    Google Scholar 

  • Kirk, D. J., Greene, L. W., Schelling, G. T. and Byers, F. M. (1985a). Effects of monensin on monovalent ion metabolism and tissue concentrations in lambs. J. Anim. Sci., 60, 1479–84.

    PubMed  CAS  Google Scholar 

  • Kirk, D. J., Greene, L. W., Schelling, G. T. and Byers, F. M. (1985b). Effects of monensin on Mg, Ca, P and Zn metabolism and tissue concentrations in lambs. J. Anim. Sci., 60, 1485–90.

    PubMed  CAS  Google Scholar 

  • Kirk, D. J., Fontenot, J. P. and Rahnema, S. (1994). Effects of feeding lasalocid and monensin on digestive tract flow and partial absorption of minerals in sheep. J. Anim. Sci., 72, 1029–37.

    PubMed  CAS  Google Scholar 

  • Klopfenstein, T. J., Purser, D. B. and Tyznik, W. J. (1964). Influence of aureomycin on rumen metabolism. J. Anim. Sci., 23, 490–5.

    Google Scholar 

  • Klusmeyer, T. H., Lynch, G. L., Clark, J. H. and Nelson, D. R. (1991). Effects of calcium salts of fatty acids and proportion of forage in diet on ruminal fermentation and nutrient flow to duodenum of cows. J. Dairy Sci., 74, 2220–32.

    PubMed  CAS  Google Scholar 

  • Kmet, V., Jonecova, Z., Bomba, A. and Nemcova, R. (1988). Stimulation of the development of rumen microflora in calves with microbial preparations. Zivocisna Vyoba, 33, 23–6.

    Google Scholar 

  • Kobayashi, Y., Wakita, M. and Hoshino, S. (1989). Comparison between influences of portmicin and of salinomycin on ruminal characteristics of sheep and growth of pigs. J. Anim. Physiol Anim. Nutr., 62, 237–45.

    CAS  Google Scholar 

  • Kon, S. K. and Porter, J. W. (1954). The intestinal synthesis of vitamins in the ruminant. In Vitamins and Hormone Advances in Research and Applications XII, ed. R. S. Harris, G. F. Marriam and K. V. Thimann. Academic Press, New York, pp. 53–68.

    Google Scholar 

  • Kone, P., Machado, P. F. and Cook, R. M. (1989). Effect of the combination of monensin and isoacids on rumen fermentation in vitro. J. Dairy Sci., 72, 2767–71.

    PubMed  CAS  Google Scholar 

  • Konno, S., Matsuura, I. and Shirahata, K. (1993). Animal feed additive comprising enzyme and amino acid. UK. Patent Application GB 2, 261, 877A.

    Google Scholar 

  • Kopecny, J. and Wallace, R. J. (1982). Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl. Environ. Microbiol., 43, 1026–33.

    PubMed  CAS  Google Scholar 

  • Kovacik, A. M., Loerch, S. C. and Dehority, B. A. (1986). Effect of supplemental sodium bicarbonate on nutrient digestibilities and ruminal pH measured continuously. J. Anim. Sci., 62, 226–34.

    PubMed  CAS  Google Scholar 

  • Kowalczyk, J., Orskov, E. R., Robinson, J. J. and Stewart, C. S. (1977). Effect of fat supplementation on voluntary food intake and rumen metabolism in sheep. Br. J. Nutr., 37, 251–7.

    PubMed  CAS  Google Scholar 

  • Krehbiel, C. R., Stock, R. A., Shain, D. H. et al. (1995). Effect of level and type of fat on subacute acidosis in cattle fed dry rolled corn finishing diets. J. Anim. Sci., 73, 2438–46.

    PubMed  CAS  Google Scholar 

  • Kumar, U., Sareen, V. K. and Singh, S. (1994). Effect of Saccharomyces cerevisiae yeast culture supplement on ruminal metabolism in buffalo calves given a high concentrate diet. Anim. Prod., 59, 209–15.

    Google Scholar 

  • Kung, Jr L. (1994). Direct-fed microbial and enzyme feed additives. In 1994 Direct-fed Microbial, Enzyme and Forage Additive Compendium. Miller Publishing Company, Minnetonka, Minnesota, pp. 17–22.

    Google Scholar 

  • Kung, Jr L. and Hession, A. O. (1995). Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. J. Anim. Sci., 73, 250–6.

    PubMed  CAS  Google Scholar 

  • Kung, Jr L., Huber, J. T., Krummry, J. D. et al. (1982). Influence of adding malic acid to dairy cattle rations on milk production, rumen volatile acids, digestibility, and nitrogen utilization. J. Dairy Sci., 65, 1170–4.

    CAS  Google Scholar 

  • Kung, Jr L., Tung, R. S. and Slyter, L. L. (1992). In vitro effects of the ionophore lysocellin on ruminal fermentation and microbial populations. J. Anim. Sci., 70, 281–8.

    PubMed  CAS  Google Scholar 

  • Kuntsman, M. P., Mitscher, L. A., Porter, J. N. et al. (1969). LL-AV290, a new antibiotic I fermentation, isolation, and characterization. Antimicrob. Agents Chemother., 1969, 242–5.

    Google Scholar 

  • Lajoie, S. F., Bank, S., Miller, T. L. and Wolin, M. J. (1988). Acetate production from hydrogen and [C-13] carbon dioxide by the microflora of human faeces. Appl Environ. Microbiol, 54, 2723–7.

    PubMed  CAS  Google Scholar 

  • Lanigan, G. W., Payne, A. L. and Peterson, J. E. (1978). Antimethanogenic drugs and Heliotropium europaeum poisoning in penned sheep. Aust. J. Agric. Res., 29, 1281–91.

    CAS  Google Scholar 

  • Lassiter, C. A. (1955). Antibiotics as growth stimulants for dairy cattle: a review. J. Dairy Sci., 36, 1102–37.

    Google Scholar 

  • Lean, I. J., Curtis, M., Dyson, M. and Lowe, B. (1994). Effects of sodium monensin on reproductive performance of dairy cattle 1. Effects on conception rates, calving-to-conception rates, calving-to-conception intervals, calving-to-heat and milk production in dairy cows. Aust. Vet. J., 71, 273–7.

    PubMed  CAS  Google Scholar 

  • Leatherwood, J. M., Morchrie, R. D. and Thomas, W. E. (1960). Some effects of a supplementary cellulase preparation on feed utilization by ruminants. J. Dairy Sci., 43, 1460–4.

    CAS  Google Scholar 

  • Lechtenberg, K. L. and Nagaraja, T. G. (1989). Antimicrobial sensitivity of Fusobacterium necrophorum isolates from bovine hepatic abscesses. J. Anim. Sci., 61, 544(Abstract).

    Google Scholar 

  • Lechtenberg, K. L., Nagaraja, T. G., Leipold, H. W. and Chengappa, M. M. (1988). Bacteriologic and histologic studies of hepatic abscesses in cattle. Am. J. Vet. Res., 49, 58–62.

    PubMed  CAS  Google Scholar 

  • Lee, R. W. and Botts, R. L. (1988). Evaluation of single oral dosing and continous feeding of Streptococcus faecium M74 (Syntabac) on performance of incoming feedlot cattle. J. Anim. Sci., 66, 460(Abstract).

    Google Scholar 

  • Lemenager, R. P., Owens, F. N., Shockey, B. J. et al. (1978). Monensin effects on rumen turnover rate, twenty four hour VFA pattern, nitrogen components and cellulose disappearance. J. Anim. Sci., 47, 255–61.

    CAS  Google Scholar 

  • Leng, R. A. (1970). Formation and production of volatile fatty acids in the rumen. In Physiology of Digestion and Metabolism in the Ruminant, ed. A. T. Phillipson. Oriel Press, Newcastle-upon-Tyne, pp. 407–21.

    Google Scholar 

  • Leng, R. A. (1982). Modification of rumen fermentation. In Nutritional Limits to Animal Production from Pastures, ed. J. B. Hacker. Commonwealth Agricultural Bureau, Farnham Royal, pp. 427–53.

    Google Scholar 

  • Leng, R. A. and Nolan, J. V. (1984). Nitrogen metabolism in the rumen. J. Dairy Sci., 67, 1072–89.

    PubMed  CAS  Google Scholar 

  • Le Ruyet, P. and Tucker, W. B. (1992). Ruminal buffers: temporal effects on buffering capacity and pH of ruminal fluid from cows fed a high concentrate diet. J. Dairy Sci., 75, 1069–77.

    PubMed  Google Scholar 

  • Lindsay, R. J. and Hogan, J. P. (1972). Digestion of two legumes and rumen bacterial growth in defaunated sheep. Aust. J. Agric. Res., 23, 321–30.

    Google Scholar 

  • Lindsey, T. O., Hedde, R. D., Sokolek, J. A. et al. (1985). In vitro characterization of aridicin activity in the rumen. J. Anim. Sci., 61(Suppl. 1), 464(Abstract).

    Google Scholar 

  • Linehan, B., Scheifinger, C. C. and Wolin, M. J. (1978). Nutritional requirements of Selenomonas ruminantium for growth in lactate glycerol, or glucose. Appl. Environ. Microbiol., 35, 317–22.

    PubMed  CAS  Google Scholar 

  • Linn, O., Paege, L. M., Doherty, P. J. et al. (1982). A service of pyromellitic diimides that improve the efficiency of rumen fermentation. J. Agric. Fd Chem., 30, 1236–42.

    CAS  Google Scholar 

  • Loerch, S. C., Berger, L. L., Gianola, D. and Fahey, Jr, G. C. (1983). Effects of dietary protein source and energy level on in situ nitrogen disappearance of various protein sources. J. Anim. Sci., 57, 1037–47.

    CAS  Google Scholar 

  • Loesche, W. J. (1969). Oxygen sensitivity of various anaerobic bacteria. Appl. Microbiol., 18, 723–7.

    PubMed  CAS  Google Scholar 

  • Loosli, J. K. and Wallace, H. D. (1950). Influence of APF and aureomycin on the growth of dairy calves. Proc. Soc. Exp. Biol. Med., 75, 531–3.

    PubMed  CAS  Google Scholar 

  • Lopez, S., Valdes, C., Newbold, C. J. and Wallace, R. J. (1995). Decreased methane production and altered fermentation in response to the addition of fumaric acid to the rumen simulation technique (Rusitec). Anim. Sci., 60, 540(Abstract).

    Google Scholar 

  • Lowe, L. B., Ball, G. J., Carruthers, V. R. et al. (1991). Monensin controlled-release intraruminal capsule for control of bloat in pastured dairy cows. Aust. Vet. J., 68, 17–20.

    PubMed  CAS  Google Scholar 

  • Lu, C. and Jorgensen, N. (1987). Saponins affect site and extent of nutrient digestion in ruminants. J. Nutr., 117, 919–27.

    PubMed  CAS  Google Scholar 

  • Lund, A. (1974). Yeasts and moulds in the bovine rumen. J. Gen. Microbiol., 81, 453–62.

    PubMed  CAS  Google Scholar 

  • Lyons, T. P. (1992). Strategy for the future: the role of biotechnology in the feed industry. In Biotechnology in the Feed Industry, ed. T. P. Lyons. Altech Technical Publications, Nicholasville, pp. 1–22.

    Google Scholar 

  • Lyons, T. P. (1994). Biotechnology in the feed industry: 1994 and beyond. In Biotechnology in the Feed Industry, ed. T. P. Lyons and K. A. Jacques. Nottingham University Press, Nottingham, pp. 1–48.

    Google Scholar 

  • MacGregor, R. C. and Armstrong, D. G. (1983). The effect of avoparcin on rumen fermentation in vitro. Proc. Nutr. Soc., 43, 21 A.

    Google Scholar 

  • MacGregor, R. C. and Armstrong, D. G. (1984). The feed antibiotic avoparcin and net uptake of amino acids from the small intestine of sheep. Can. J. Anim. Sci., 64(Suppl.), 134–5.

    CAS  Google Scholar 

  • Mackie, R. I. and Therion, J. J. (1984). Influence of mineral interactions on growth efficiency of rumen bacteria. In Herbivore Nutrition, ed. F. M. Gilchrist and R. I. Mackie. Science Press, Craighall, pp. 435–54.

    Google Scholar 

  • MacRae, J. C. and Lobley, G. E. (1991). Physiology and metabolic implications of conventional and novel methods of the manipulation of growth and production. Livest. Prod. Sci., 27, 43–59.

    Google Scholar 

  • Maczulak, A. E., Dehority, B. A. and Palmquist, D. L. (1981). Effects of long-chain fatty acids on growth of rumen bacteria. Appl. Environ. Microbiol., 42, 856–62.

    PubMed  CAS  Google Scholar 

  • Madeira, H. M. F. and Morrison, M. (1993). The effect of protamine upon growth of Prevotella ruminicola. In Proceedings of 21st Biennial Conference on Rumen Function, Chicago, Illinois, p. 35(Abstract).

    Google Scholar 

  • Madeira, H. M. F., Zhang, L. and Morrison, M. (1995). Use of the ‘smuggling concept’ for the study of peptide transport in Prevotella ruminicola. In Abstracts of the 95th meeting of the American Society for Microbiolgy, p. 550.

    Google Scholar 

  • Mann, S. O., Masson, F. M. and Oxford, A. E. (1954). Effect of feeding aureomycin to calves upon the establishment of their normal rumen microflora and microfauna. Br. J. Nutr., 8, 246–52.

    PubMed  CAS  Google Scholar 

  • Marounek, M. and Hodrova, B. (1989). Susceptibility and resistance of anaerobic fungi to antimicrobial feed additives. Lett. Appl. Microbiol., 9, 173–5.

    CAS  Google Scholar 

  • Marounek, M., Petr, O. and Machanova, L. (1990). Effect of monensin on in vitro fermentation of maize starch by hindgut contents of cattle. J. Agric. Sci. (Camb.), 115, 389–92.

    CAS  Google Scholar 

  • Martin, S. A. and Macy, J. M. (1985). Effects of monensin, pyromellitic diimide and 2-bromoethanesulfonic acid on rumen fermentation in vitro. J. Anim. Sci., 60, 544–50.

    PubMed  CAS  Google Scholar 

  • Martin, S. A. and Nisbet, D. J. (1992). Effect of direct-fed microbials on rumen microbial fermentation. J. Dairy Sci., 75, 1736–44.

    PubMed  CAS  Google Scholar 

  • Martin, S. A. and Streeter, M. N. (1995). Effect of malate on in vitro mixed ruminal microorganism fermentation. J. Anim. Sci., 73, 2141–5.

    PubMed  CAS  Google Scholar 

  • Marwaha, S. R., Kochar, A. S., Sukhija, P. S. and Bhatia, J. S. (1972). Fatty acid metabolism in rumen microorganisms as influenced by different types of dietary lipids. Ind. J. Dairy Sci., 25, 46–51.

    CAS  Google Scholar 

  • Mathers, J. C. and Miller, E. L. (1982). Some effects of chloral hydrate on rumen fermentation and digestion in sheep. J. Agric. Sci. (Camb.), 99, 215–24.

    CAS  Google Scholar 

  • McAllan, A. B., Knight, R. and Sutton, J. D. (1983). The effect of free and protected oils on the digestion of dietary carbohydrates between the mouth and the duodenum of sheep. Br. J. Nutr., 49, 433–40.

    PubMed  CAS  Google Scholar 

  • McArthur, J. M. and Miltimore, J. E. (1962). Rumen gas analysis by gas solid chromatography. Can. J. Anim. Sci., 41, 187–92.

    Google Scholar 

  • McClymont, G. L. (1952). Specific dynamic actions of acetic acid and heat increment of feeding ruminants. Aust. J. Agric. Res. B, 5, 374–83.

    CAS  Google Scholar 

  • McGuffy, R. K. (1995). Potential for improving productive efficiency of lactating dairy cows through use of ionophores. In Maryland Nutrition Conference, College Park, MD, pp. 1–13.

    Google Scholar 

  • McGuffy, R. K., Green, H. B., Basson, R. P. and Potter, E. L. (1983). Actaplanin for lactating dairy cows. J. Dairy Sci., 66, 198(Abstract).

    Google Scholar 

  • McGuire, J. M., Boniece, W. S., Higgins, C. E. et al. (1961). Tylosin, a new antibiotic: I. Microbiological Studies. Antibiot. Chemother., 18, 320–7.

    Google Scholar 

  • Mees, D. C. and Merchen, N. R. (1985). Effects of sodium bicarbonate additions to wheat straw based diets on rumen turnover rates and nutrient digestibility by sheep. Nutr. Rep. Int., 32, 1067–72.

    CAS  Google Scholar 

  • Mees, D. C., Merchen, N. R. and Mitchel, C. J. (1985). Effects of sodium bicarbonate on nitrogen balance, bacterial protein synthesis and sites of nutrient digestion in sheep. J. Anim. Sci., 61, 985–94.

    PubMed  CAS  Google Scholar 

  • Merchen, N. R. and Berger, L. L. (1985). Effect of salinomycin level on nutrient digestibility and ruminal characteristics of sheep and feedlot performance of cattle. J. Anim. Sci., 60, 1338–46.

    PubMed  CAS  Google Scholar 

  • Merchen, N. R. and Titgemeyer, E. C. (1992). Manipulation of amino acid supply to the growing ruminant. J. Anim. Sci., 70, 3238–47.

    PubMed  CAS  Google Scholar 

  • Mertens, D. (1979). Effects of buffers upon fiber digestion. In Regulation of Acid-Base Balance, ed. W. H. Hale and P. Meinhardt. Church and Dwight Co. Inc., Piscataway, NJ, pp. 68–80.

    Google Scholar 

  • Miller, B. L., Meiske, J. C. and Goodrich, R. D. (1986a). Effects of dietary additives on B-vitamin production and absorption in steers. J. Anim. Sci., 62, 484–96.

    CAS  Google Scholar 

  • Miller, B. C., Goodrich, R. D. and Meiske, J. C. (1986b). Effects of grain source and concentrate level on B-vitamin production and absorption in steers. J. Anim. Sci., 62, 473–83.

    CAS  Google Scholar 

  • Miller, T. P., Tucker, W. B., Hogue, J. F. et al. (1992). Evaluation of batch culture approaches that can be used to screen release rates of ruminal buffers. J. Dairy Sci., 75, 3028–38.

    Google Scholar 

  • Miner, J. L. (1992). Recent advances in the central control of intake in ruminants. J. Anim. Sci., 70, 1283–9.

    PubMed  CAS  Google Scholar 

  • Mir, P. S., Mir, Z. and Robertson, J. A. (1986). Effect of branched-chain amino acids or fatty acid supplementation on in vitro digestibility of barley straw or alfalfa hay. Can. J. Anim. Sci., 66, 151–6.

    CAS  Google Scholar 

  • Mitchell, G. E., Little, C. O., Kennedy, L. G. and Karr, M. R. (1969). Ruminal volatile fatty acid concentrations in steers fed antibiotics. J. Anim. Sci., 29, 509–11.

    PubMed  CAS  Google Scholar 

  • Miyari, N., Miyoshi, T., Aoki, H. et al. (1972). Thiopeptin, a new feed additive antibiotic: microbiological and chemical studies. Antimicrob. Agents Chemother., 1, 192–6.

    Google Scholar 

  • Moloney, A. P. and Drennan, M. J. (1994). The influence of the basal diet on the effects of yeast culture on ruminal fermentation and digestibility in steers. Anim. Fd Sci. Technol., 50, 55–73.

    CAS  Google Scholar 

  • Moore, C. K., Amos, H. E., Evans, J. J. et al (1980). Nitrogen balance, abomasal crude protein and amino acids in wethers fed formaldehyde-treated coastal-bermuda grass and infused with methionine, glucose or monensin. J. Anim. Sci., 50, 1145–59.

    PubMed  CAS  Google Scholar 

  • Morris, F. E., Branine, M. E., Galyean, M. L. et al. (1990). Effect of rotating monensin plus tylosin and lasalocid on performance, ruminal fermentation, and site and extent of digestion in feedlot cattle. J. Anim. Sci., 68, 3069–78.

    PubMed  CAS  Google Scholar 

  • Morrison, M., Mackie, R. I. and Kistner, A. (1990). 3-Phenylpropanoic acid improves the affinity of Ruminococcus albus for cellulose in continuous culture. Appl. Environ. Microbiol, 56, 3220–2.

    PubMed  CAS  Google Scholar 

  • Morvan, B., Dore, J., Rieu-Lesme, F. et al. (1994). Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FEMS Microbiol. Lett 117, 249–56.

    PubMed  CAS  Google Scholar 

  • Moss, A. R. (1993). Methane, Global Warming and Production by Animals. Chalcombe Publications, Canterbury.

    Google Scholar 

  • Mudd, A. J. and Smith, H. (1982). The use of avoparcin as a growth promotor for beef cattle in Europe. Anim. Prod., 48, 376(Abstract).

    Google Scholar 

  • Muir, L. A. and Barreto, A. Jr (1979). Sensitivity of Streptococcus bovis to various antibiotics. J. Anim. Sci., 48, 468–73.

    PubMed  CAS  Google Scholar 

  • Muir, L. A., Duquette, P. F., Rickes, E. L. and Smith, G. E. (1980a). Thiopeptin for the prevention of ovine lactic acidosis induced by diet change. J. Anim. Sci., 51, 1182–8.

    PubMed  CAS  Google Scholar 

  • Muir, L. A., Rickes, E. L., Duquette, P. F. and Smith, G. E. (1980b). Control of wheat-induced lactic acidosis in sheep by thiopeptin and related antibiotics. J. Anim. Sci., 50, 547–53.

    PubMed  CAS  Google Scholar 

  • Muller, L. D. and Kilmer, L. H. (1979). Sodium Bicarbonate in Dairy Nutrition. National Feed Ingredients Associates, Des Moines, IA.

    Google Scholar 

  • Murphy, M. R., Cambell, J. M., Nombekcla, S. W. and Erickson, P. S. (1993). Effect of lasalocid on dairy cows in early lactation. J. Dairy Sci., 76, 279(Abstract).

    Google Scholar 

  • Murphy, M., Unden, P., Palmquist, D. L. and Wiktorsson, H. (1987). Rumen and total diet digestibilities in lactating cows fed diets containing full-fat rapeseed. J. Dairy Sci., 70, 1572–82.

    PubMed  CAS  Google Scholar 

  • Mutsvangwa, T., Edwards, I. E., Topps, J. H. and Paterson, G. F. M. (1992). The effect of dietary inclusion of yeast culture (Yea-Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Anim. Prod., 55, 35–40.

    CAS  Google Scholar 

  • Nagaraja, T. G. (1994). Rumen microbial and fermentative changes associated with grain bloat in cattle. Proc. Soc. Nutr. Physio., 3, 207(Abstract).

    Google Scholar 

  • Nagaraja, T. G. (1995). Ionophores and antibiotics in ruminants. In Biotechnology in Animal Feeds and Animal Feeding, ed. R. J. Wallace and A. Chesson. VCH Publishers, New York, pp. 173–204.

    Google Scholar 

  • Nagaraja, T. G. and Taylor, M. B. (1987). Susceptibility and resistance of ruminal bacteria to antimicrobial feed additives. Appl. Environ. Microbiol., 53, 1620–5.

    PubMed  CAS  Google Scholar 

  • Nagaraja, T. G. and Wolfrom, G. W. (1993a). Evaluation of lysocellin on frothy bloat in cattle grazing bloat-provocative alfalfa pasture. J. Anim. Sci., 71(Suppl. 1), 79(Abstract).

    Google Scholar 

  • Nagaraja, T. G. and Wolfrom, G. W. (1993b). Evaluation of lysocellin on frothy bloat fed bloat-provocative, high-grain diet. J. Anim. Sci., 71(Suppl. 1), 79(Abstract).

    Google Scholar 

  • Nagaraja, T. G., Avery, T. B., Bartley, E. E. et al. (1982). Effect of lasalocid, monensin or thiopeptin on lactic acidosis in cattle. J. Anim. Sci., 54, 649–58.

    PubMed  CAS  Google Scholar 

  • Nagaraja, T. G., Avery, T. B., Galitzer, S. J. and Harmon, D. L. (1985). Effect of ionophore antibiotics on experimentally induced lactic acidosis in cattle. Am. J. Vet. Res., 46, 2444–52.

    PubMed  CAS  Google Scholar 

  • Nagaraja, T. G., Taylor, M. B., Harmon, D. L. and Boyer, J. E. (1987). In vitro lactic acid inhibition and alterations in volatile fatty acid production by antimicrobial feed additives. J. Anim. sci., 65, 1064–76.

    PubMed  CAS  Google Scholar 

  • Nagaraja, T. G., Godfrey, S. I., Winslow, S. W. and Rowe, J. B. (1995a). Responses in ciliated protozoa and rumen fermentation in sheep supplemented with barley plus virginiamycin. Aust. J. Agric. Res., 46, 1137–17.

    CAS  Google Scholar 

  • Nagaraja, T. G., Godfrey, S. I., Winslow, S. W. et al. (1995b). Effect of virginiamycin on ruminal fermentation in faunated or ciliate-free sheep overfed with barley grain. Small Ruminant Res., 17, 1–8.

    Google Scholar 

  • Nagaraja, T. G., Wallace, N., Sun, Y. et al. (1996). Effect of dietary tylosin on Fusobaeterium necrophorum population in the rumen of cattle fed high-grain diet. J. Anim. Sci., 74(Suppl. 1), 81 (Abstract).

    Google Scholar 

  • Navas-Camacho, A., Laredo, M. A., Cuesta, A. et al. (1993). Effect of supplementation with a tree legume forage on rumen function. Livest. Res. Rural Dev., 5, 59–73.

    Google Scholar 

  • Navas-Camacho, A., Laredo, M. A., Cuesta, A. et al. (1994). Evaluation of tropical trees with high or medium saponin content as dietary alternative to eliminate protozoa from the rumen. Proc. Soe. Nutr. Physiol., 3, 204(Abstract).

    Google Scholar 

  • Neibarger, L. R. and Nagaraja, T. G. (1991). Ruminal microbial and fermentative changes in cattle fed a bloat-provocative grain diet with tetronasin. J. Anim. Sci., 69(Suppl. 1), 146(Abstract).

    Google Scholar 

  • Newbold, C. J. (1990). Probiotics as feed additives in ruminant diets. In 51st Minnesota Nutrition Conference, ed. M. Stern, G. Wagner, J. Rogers and R. Seilner. University of Minnesota, Minnesota, pp. 102–18.

    Google Scholar 

  • Newbold, C. J. (1992). Probiotics: a new generation of rumen modifiers? Med. Fac. Landbouww. Univ. Gent, 574b, 1925–33.

    Google Scholar 

  • Newbold, C. J. (1994). Fungi and probiotics in ruminant nutrition. In Microorganisms and Enzyme Preparations in Animal Nutrition, ed. J. I. R. Castanon. Directorate-General for Agriculture, European Commission, Brussels, pp. 177–91.

    Google Scholar 

  • Newbold, C. J. (1995). Microbial feed additives for ruminants. In Biotechnology in Animal Feeds and Animal Feeding, ed. R. J. Wallace and A. Chesson. VCH, Weinheim, pp. 259–78.

    Google Scholar 

  • Newbold, C. J. (1996). Probiotics for ruminants. Ann. Zootech, 45(Suppl.), 329–35.

    Google Scholar 

  • Newbold, C. J. and Wallace, R. J. (1988). Effects of the ionophores monensin and tetronasin on simulated development of ruminal lactic acidosis in vitro. Appl. Environ. Microbiol., 54, 2981–5.

    PubMed  CAS  Google Scholar 

  • Newbold, C. J. and Wallace, R. J. (1989). Changes in the rumen bacterium, Bacteroides ruminicola, grown in the presence of the ionophore, tetronasin. Aust.-Asian J. Anim. Sci., 2, 452–3.

    Google Scholar 

  • Newbold, C. J. and Wallace, R. J. (1992). The effect of yeast and distillery by-products on the fermentation in the rumen simulation technique (Rusitec). Anim. Prod., 54, 504(Abstract).

    Google Scholar 

  • Newbold, C. J., Wallace, R. J., Watt, N. D. and Richardson, A. J. (1988). Effect of the novel ionophore tetronasin (ICI 139603) on ruminal microorganisms. Appl. Environ. Microbiol., 54, 544–7.

    PubMed  CAS  Google Scholar 

  • Newbold, C. J., Wallace, R. J. and McKain, N. (1990a). Effects of the ionophore tetronasin on nitrogen metabolism by ruminal microorganisms in vitro. J. Anim. Sci., 68, 1103–9.

    PubMed  CAS  Google Scholar 

  • Newbold, C. J., Williams, P. E. V., McKain, N. et al. (1990b). The effects of yeast culture on yeast numbers and fermentation in the rumen of sheep. Proc. Nutr. Soc., 49, 47A(Abstract).

    Google Scholar 

  • Newbold, C. J., Brock, R. and Wallace, R. J. (1991). Influence of autoclaved or irradiated Aspergillus oryzae fermentation extract on the fermentation in the rumen simulation technique (Rusitec) J. Agric. Sci. (Camb.), 116, 159–62.

    Google Scholar 

  • Newbold, C. J., Frumholtz, P. P. and Wallace, R. J. (1992a). Influence of Aspergillus oryzae fermentation extract on rumen fermentation and blood constituents in sheep given diets of grass hay and barley. J. Agric. Sci. Camb., 119, 423–7.

    CAS  Google Scholar 

  • Newbold, C. J. Brock, R. and Wallace, R. J. (1992b). The effect of Aspergillus oryzae fermentation extract on the growth of fungi and ciliate protozoa in the rumen. Lett. Appl. Microbiol., 15, 109–12.

    Google Scholar 

  • Newbold, C. J., McKain, N. and Wallace, R. J. (1993a). Combined effects of Aspergillus oryzae fermentation extract and monensin on fermentation in rumen simulating technique (Rusitec). J. Agric. Sci. Camb., 121, 241–6.

    CAS  Google Scholar 

  • Newbold, C. J., Wallace, R. J. and Walker, N. D. (1993b). The effect of tetronasin and monensin on fementation, microbial numbers and the development of ionophore-resistant bacteria in the rumen. J. Appl. Bacteriol., 75, 129–34.

    PubMed  CAS  Google Scholar 

  • Newbold, C. J., El Hassan, S. M., Wallace, R. J. etal. (1994). Influence of African multipurpose trees on activity of rumen protozoa and bacteria in vitro. Anim. Prod., 58, 461.

    Google Scholar 

  • Newbold, C. J., Wallace, R. J., Chen, X. B. and Mcintosh, F. M. (1995). Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. J. Anim. Sci., 73, 1811–18.

    PubMed  CAS  Google Scholar 

  • Newbold, C. J., Mcintosh, F. M. and Wallace, R. J. (1996). Mode of action of the yeast Saccharomyces cerevisiae, as a feed additive for ruminants. Br. J. Nutr., 76, 249–61.

    PubMed  CAS  Google Scholar 

  • Newman, K. E. and Dawson, K. A. (1987). Associative effects of probiotics and diet on ruminal fermentation. In Proceedings of 19th Biennial Conference on Rumen Function, Chicago, Illinois, p. 41.

    Google Scholar 

  • Newman, K. E., Chandler, V. E. and Girard, I. (1991). Ruminal responses to feed that has been pelleted with and without yeast culture. J. Anim. Sci., 69, 498(Abstract).

    Google Scholar 

  • Nicholson, J. W. G. (1981). Nutrition and feeding aspects of the utilization of processed lignocellulosic waste materials by animals. Agric. Environ., 6, 205–28.

    CAS  Google Scholar 

  • Nicholson, T. and Omer, S. A. (1983). The inhibitory effect of intestinal infusions of unsaturated long-chain fatty acids on forestomach motility of sheep. Br. J. Nutr., 50, 141–9.

    PubMed  CAS  Google Scholar 

  • Nieman, C. (1954). Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol. Rev., 18, 147–63.

    PubMed  CAS  Google Scholar 

  • Nisbet, D. J. and Martin, S. A. (1990). Effect of dicarboxylic acids and Aspergilus oryzae fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium. Appl. Environ. Microbiol., 56, 3515–18.

    PubMed  CAS  Google Scholar 

  • Nisbet, D. J. and Martin, S. A. (1991). The effect of Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium. J. Anim. Sci., 69, 4628–33.

    PubMed  CAS  Google Scholar 

  • Nisbet, D. J. and Martin, S. A. (1993). Effects of fumarate, L-malate, and an Aspergillus oryzae fermentation extract on D-lactate utilization by the ruminal bacterium Selenomonas ruminantium. Curr. Microbiol., 26, 133–6.

    CAS  Google Scholar 

  • Nisbet, D. J. and Martin, S. A. (1994). Factors affecting L-lactate utilization by Selenomonas ruminantium. J. Anim. Sci., 72, 1355–61.

    PubMed  CAS  Google Scholar 

  • Nocek, J. E. (1992). Feeding sequence and strategy effects on ruminal environment and production performance in first lactation cows. J. Dairy Sci., 75, 3100–8.

    PubMed  CAS  Google Scholar 

  • Nocek, J. E. and Tamminga, S. (1991). Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. J. Dairy Sci., 74, 3598–629.

    PubMed  CAS  Google Scholar 

  • Nocerini, M. R., Honeyfield, D. C., Carlson, J. R. and Breeze, R. G. (1985). Reduction of 3-methylindole production and prevention of acute bovine pulmonary edema and emphysema with lasalocid. J. Anim. Sci., 60, 232–8.

    PubMed  CAS  Google Scholar 

  • Nolan, J. V. and Stachiw, S. (1979). Fermentation and nitrogen dynamics in Merino sheep given a low quality roughage diet. Br. J. Nutr., 42, 63–79.

    PubMed  CAS  Google Scholar 

  • O’Connor, J. J. (1980). Mechanisms of growth promoters in single stomach animals. In Growth in Animals, ed. T. L. J. Lawrence. Butterworths, London, pp. 207–27.

    Google Scholar 

  • O’Connor, J. J., Myers, G. S., Mapleden, D. C. and Vander Noot, G. W. (1970). Chemical additives in rumen fermentations: in vitro effects of various drugs on rumen volatile fatty acids and protozoa. J. Anim. Sci., 30, 812–18.

    PubMed  Google Scholar 

  • Oellermann, S. O., Arambel, M. J., Kent, B. A. and Walters, J. L. (1990). Effect of graded amounts of Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility in cattle. J. Dairy Sci., 73, 2413–16.

    CAS  Google Scholar 

  • Offer, N. W. (1990). Maximising fiber digestion in the rumen: the role of yeast culture. In Biotechnology in the Feed Industry, ed. T. P. Lyons. Alltech Technical Publications, Nicholasville, Kentucky, pp. 79–96.

    Google Scholar 

  • Ohajuruka, O. A., Wu, Z. and Palmquist, D. L. (1991). Ruminal metabolism, fiber, and protein digestion by lactating cows fed clacium soap or animal-vegetable fat. J. Dairy Sci., 74, 2601–9.

    PubMed  CAS  Google Scholar 

  • Ohsumi, T., Sato, H., Yoshihara, Y. and Ikeda, S. (1994). Selection and breeding of lysine accumulating Saccharomyces cerevisiae as a stable source of lysine in the rumen. Biosci. Biotechnol. Biochem., 58, 1302–5.

    CAS  Google Scholar 

  • Okeke, G. C., Buchanan-Smith, J. G. and Grovum, W. L. (1983). Effects of buffers on ruminal rate of passage and degradation of soybean meal in steers. J. Anim. Sci., 56, 1393–9.

    PubMed  CAS  Google Scholar 

  • O’Kelly, J. C. and Spiers, W. G. (1992). Effect of monensin on methane and heat production of steers fed legume hay. Aust. J. Agric. Res., 42, 1789–93.

    Google Scholar 

  • Olubobokun, J. A., Loerch, S. C. and Palmquist, D. L. (1985). Effect of tallow and tallow calcium soap on feed intake and nutrient digestibility in ruminants. Nutr. Rep. Int., 31, 1075–84.

    CAS  Google Scholar 

  • Olumeyan, D. B., Nagaraja, T. G., Miller, G. W. et al. (1986). Rumen microbial changes in cattle fed diets with or without salinomycin. Appl. Environ. Microbiol., 51, 340–5.

    PubMed  CAS  Google Scholar 

  • Oney, J. M., Hemken, R. W., Clark, T. W. and Amaral-Phillips, D. M. (1994). Effect of monensin and dietary fiber content on milk production and composition, rumen fermentation and concentration of plasma p-hydroxybutyrate. J. Dairy Sci., 11, 383(Abstract).

    Google Scholar 

  • Ørskov, E. R. (1975). Manipulation of rumen fermentation for maximum food utilization. World Rev. Nutr. Diet., 22, 153–82.

    Google Scholar 

  • Ørskov, E. R. (1979). Recent information on processing grain for ruminants. Livest. Prod. Sci., 6, 335–47.

    Google Scholar 

  • Ørskov, E. R., Hine, R. S. and Grubb, D. A. (1978). The effect of urea on digestion and voluntary intake by sheep of diets supplemented with fat. Anim. Prod., 21, 241–5.

    Google Scholar 

  • Ørskov, E. R., Grubb, D. A., Smith, J. S. et al. (1979). Efficiency of utilization of volatile fatty acids for maintenance and energy retention by sheep. Br. J. Nutr., 41, 541–50.

    PubMed  Google Scholar 

  • Ørskov, E. R., Macleod, E. R. and Nakashima, Y. (1991). Effect of different volatile fatty acids mixtures on energy metabolism in cattle. J. Anim. Sci., 69, 3389–97.

    PubMed  Google Scholar 

  • Oscar, T. P. and Spears, J. W. (1988). Nickel-induced alterations of in vitro and in vivo ruminal fermentation. J. Anim. Sci., 66, 2313–24.

    CAS  Google Scholar 

  • Oscar, T. P. and Spears, J. W. (1990). Incorporation of nickel into ruminal factor F430 as affected by monensin and formate. J. Anim. Sci., 68, 1400–4.

    PubMed  CAS  Google Scholar 

  • Oscar, T. P., Spears, J. W. and Shih, J. C. H. (1987). Performance, methanogenesis and nitrogen metabolism of finishing steers fed monensin and nickel. J. Anim. Sci., 64, 887–96.

    PubMed  CAS  Google Scholar 

  • Owens, F. N., Weakly, D. C. and Goetsch, A. L. (1984). Modification of rumen fermentation to increase efficiency of fermentation and digestion in the rumen. In Herbivore Nutrition in the Subtropics and Tropics, ed. F. M. C. Gilchrist and R. I. Mackie. Science Press, Craighall, pp. 435–54.

    Google Scholar 

  • Owens, F. N., Zinn, R. A., and Kim, Y. K. (1986). Limits to starch digestion in the ruminant small intestine. J. Anim. Sci., 63, 1634–48.

    PubMed  CAS  Google Scholar 

  • Palmquist, D. L. (1984). Use of fats in diets for lactating dairy cows. In Fats in Animal Nutrition, ed. J. Wiseman. Butterworths. London, pp. 357–81.

    Google Scholar 

  • Palmquist, D. L. (1991). Influence of source and amount of dietary fat on digestibility in lactating cows. J. Dairy Sci., 74, 1354–60.

    PubMed  CAS  Google Scholar 

  • Palmquist, D. L. (1994). The role of dietary fats in efficiency of ruminants. J. Nutr., 124, 1377S–82S.

    PubMed  CAS  Google Scholar 

  • Palmquist, D. L. and Conrad, H. R. (1978). High fat rations for dairy cows: effects on feed intake, milk and fat productions and plasma metabolites. J. Dairy Sci., 61, 890–901.

    CAS  Google Scholar 

  • Palmquist, D. L. and Conrad, H. R. (1980). High fat rations for dairy cows: tallow and hydrolyzed blended fat at two intakes. J. Dairy Sci., 63, 391–5.

    PubMed  CAS  Google Scholar 

  • Palmquist, D. L. and Jenkins, T. C. (1980). Fat in lactation rations: review. J. Dairy Sci., 63, 1–14.

    PubMed  CAS  Google Scholar 

  • Palmquist, D. L., Beaulieu, A. D. and Barbano, D. M. (1993a). Feed and animal factors influencing milk fat composition. J. Dairy Sci., 76, 1753–71.

    PubMed  CAS  Google Scholar 

  • Palmquist, D. L., Weisbjerg, M. R. and Hvelplund, T. (1993b). Ruminal, intestinal, and total digestibilities of nutrients in cows fed diets high in fat and undegradable protein. J. Dairy Sci., 76, 1353–64.

    PubMed  CAS  Google Scholar 

  • Pantoja, J., Firkins, J. L., Eastridge, M. L. and Hull, B. L. (1994). Effects of fat saturation and source of fiber on site of nutrient digestion and milk production by lactating dairy cows. J. Dairy Sci., 11, 2341–56.

    Google Scholar 

  • Pantoja, J., Firkins, J. L. and Eastridge, M. L. (1995). Site of digestion and milk production by fed diets differing in saturation, esterification, and chain length. J. Dairy Sci., 78, 2247–58.

    PubMed  CAS  Google Scholar 

  • Papas, A. M., Ames, S. R., Cook, R. M. et al. (1984). Production responses of dairy cows fed diets supplemented with ammonium salts of iso C-4 and C-5 acids. J. Dairy Sci., 67, 276–93.

    PubMed  CAS  Google Scholar 

  • Parigi-Bini, R. (1979). Researches on virginiamycin supplementation of feeds used in intensive cattle management. In Performance in Animal Production, Smith Kline, Milan, pp. 237–50.

    Google Scholar 

  • Parker, D. S. (1990). Manipulation of the functional activity of the gut by dietary and other means (antibiotics/ probiotics) in ruminants. J. Nutr., 120, 639–48.

    PubMed  CAS  Google Scholar 

  • Parker, D. S., MacGregor, R. C., Finlayson, H. J. et al. (1984). The effect of including avoparcin in the diet on cell turnover and enzyme activity in the mucosa of the rat small intestine. Can. J. Anim. Sci., 64(Suppl. 1), 136–7(Abstract).

    CAS  Google Scholar 

  • Paster, B. J., Russell, J. B., Yang, C. M. J. et al. (1993). Phylogeny of the ammonia producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int. J. Syst. Baeteriol., 43, 107–10.

    CAS  Google Scholar 

  • Peirce-Sandner, S. B., Papas, A. M., Rogers, J. A. et al. (1985). Supplementation of dairy cows’ diets with ammonium salts of volatile fatty acids. J. Dairy Sci., 68, 2895–907.

    PubMed  CAS  Google Scholar 

  • Perry, T. W., Riley, J. G., Mohler, M. T. and Pope, R. B. (1986). Use of Chlortetracycline for treatment of new feedlot cattle. J. Anim. Sci., 62, 1215–19.

    PubMed  CAS  Google Scholar 

  • Phillips, M. W. and Gordon, G. L. R. (1992). Fungistatic and fungicidal effects of the ionophores monensin and tetronasin on the rumen fungus Neocallimastix sp. LM1. Lett. Appl. Microbiol., 15, 116–19.

    PubMed  CAS  Google Scholar 

  • Plata, F. P., Mendoza, G. D. M., Barcena-Gama, J. R. and Gonzalez, S. M. (1994). Effect of a yeast culture (Saccharomyces cerevisiae) on neutral detergent fiber digestion in steers fed oat straw based diets. Anim. Fd Sci. Technol., 49, 203–10.

    Google Scholar 

  • Poos, M. I., Hanson, T. L. and Klopfenstein, T. J. (1979). Monensin effects of diet digestibility, ruminal protein bypass and microbial protein synthesis. J. Anim. Sci., 48, 1516–24.

    PubMed  CAS  Google Scholar 

  • Potchoiba, M. J., Carlson, J. R., Nocerini, M. R. and Breeze, R. G. (1992). Effect of monensin and supplemental hay on ruminal 3-methylindole formation in adult cows after abrupt change to lush pasture. Am. J. Vet. Res., 53, 129–33.

    PubMed  CAS  Google Scholar 

  • Potter, E. L., Wray, M. I., Muller, R. D. et al. (1985). Effect of monensin on average daily gain, feed efficiency and liver abscess incidence in feedlot cattle. J. Anim. Sci., 72, 502–8.

    Google Scholar 

  • Prange, R. W., Davis, C. L. and Clark, J. H. (1978). Propionate production in the rumen of Holstein steers fed either a control or monensin supplemented diet. J. Anim. Sci., 46, 1120–4.

    CAS  Google Scholar 

  • Pressman, B. C. (1968). Ionophorus antibiotics as models for biological transport. Fed. Proc., 27, 1283–8.

    PubMed  CAS  Google Scholar 

  • Pressman, B. C. (1976). Biological applications of ionophores. Annu. Rev. Bioehem., 45, 501–30.

    CAS  Google Scholar 

  • Prins, R. A. (1965). Action of chloral hydrate on rumen microorganisms in vitro. J. Dairy Sci., 48, 991–3.

    PubMed  CAS  Google Scholar 

  • Prins, R. A. (1978). Nutritional impact of intestinal drug-microbe interactions. In Nutrition and Drug Interrelations, ed. J. N. Hatcock and J. Coon. Academic Press, New York and London, pp. 189–251.

    Google Scholar 

  • Prins, R. A., Van Nevel, C. J. and Demeyer, D. I. (1972). Pure culture studies of inhibitors for methanogenic bacteria. Ant. Van Leeuwen., 38, 281–7.

    CAS  Google Scholar 

  • Prins, R. A., Van Rheenen, D. L. and Van Klooster, A. T. (1983). Characterisation of microbial proteolytic enzymes in the rumen. Ant. Van. Leeuwen., 49, 585–95.

    CAS  Google Scholar 

  • Purser, D. B. and Moir, R. J. (1966). Dietary effects upon concentrations of protozoa in the rumen. J. Anim. Sci., 25, 668–74.

    PubMed  CAS  Google Scholar 

  • Purser, D. B., Klopfenstein, T. J. and Cline, J. H. (1965). Influence of tylosin and aureomycin upon rumen metabolism and the microbial populations. J. Anim. Sci., 24, 1039–44.

    CAS  Google Scholar 

  • Quaghebeur, D. and Oyaert, W. (1971). Effect of chloral hydrate and related compounds on the activity of several enzymes in extracts of rumen microorganisms. Zentrabl. Veterinarmed., 18, 417–27.

    CAS  Google Scholar 

  • Raun, A. P. (1990). Ionophores — a case study in additive development. Feed Management, 41, 63.

    Google Scholar 

  • Raun, A. P., Cooley, C. O., Potter, E. L. et al. (1976). Effect of monensin on feed efficiency of feedlot cattle. J. Anim. Sci., 43, 670–7.

    CAS  Google Scholar 

  • Redin, G. S. and Dornbush, A. C. (1968). LL-AV290, a new antibiotic. II Antibacterial efficacy in mice and in vitro. Antimierob. Agents Chemother., 1968, 246–8.

    Google Scholar 

  • Reed, J. D. (1995). Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Dairy Sci., 73, 1516–28.

    CAS  Google Scholar 

  • Reed, P. W. (1979). Ionophores. Methods, Enzymol., 55, 435–54.

    CAS  Google Scholar 

  • Reid, R. L. (1994). Nitrogen components of forages and feedstuffs. In Principles of Protein Nutrition of Ruminants, ed. J. M. Asplund. CRC Press, Boca Raton, pp. 43–70.

    Google Scholar 

  • Reynolds, C. K., Huntington, G. B., Elsasser, T. H. et al. (1989). Net metabolism of hormones by portal drained viscera and liver. J. Dairy Sci., 72, 1459–68.

    PubMed  CAS  Google Scholar 

  • Richardson, L. F., Raun, A. P., Potter, E. L. et al. (1976). Effect of monensin on rumen fermentation in vitro and in vivo. J. Anim. Sci., 43, 657–64.

    CAS  Google Scholar 

  • Ricke, S. C., Berger, L. L., Van der Aar, P. J. and Fahey, G. C. Jr (1984). Effects of lasalocid and monensin on nutrient digestion, metabolism and rumen characteristics of sheep. J. Anim. Sci., 58, 194–202.

    PubMed  CAS  Google Scholar 

  • Riddell, D. O., Bartley, E. E. and Dayton, A. D. (1980). Effect of nicotinic acid on rumen fermentation in vitro and in vivo. J. Dairy Sci., 61, 1429–36.

    Google Scholar 

  • Riddell, D. O., Bartley, E. E. and Dayton, A. D. (1981). Effect of nicotinic acid on microbial protein synthesis in vitro and on dairy cattle growth and milk production. J. Dairy Sci., 64, 782–91.

    PubMed  CAS  Google Scholar 

  • Riddell, D. O., Bartley, E. E., Arambel, M. J. et al. (1985). Effect of niacin supplementation on ruminal niacin synthesis and degradation in cattle. Nutr. Rep. Int., 31, 407–13.

    CAS  Google Scholar 

  • Robinson, J. A., Smolenski, W. J., Greening, R. C. et al. (1992). Prevention of acute acidosis and enhancement of feed intake in the bovine by Megasphaera elsdenii 407A. J. Anim. Sci., 70(Suppl. 1), 310(Abstract).

    Google Scholar 

  • Robinson, J. R. (1986). Niacin in beef cattle nutrition. Anim. Nutr. Health, April 9–16.

    Google Scholar 

  • Robinson, P. H. (1989). Dynamic aspects of feeding management for dairy cows. J. Dairy Sci., 72, 1197–209.

    Google Scholar 

  • Rogers, J. A. and Davis, C. L. (1982a). Rumen volatile fatty acid production and nutrient utilization in steers fed a diet supplemented with sodium bicarbonate and monensin. J. Dairy Sci., 65, 944–52.

    PubMed  CAS  Google Scholar 

  • Rogers, J. A. and Davis, C. L. (1982b). Effects of intraruminal infusions of mineral salts on volatile fatty acid production in steers fed high-grain and high-roughage diets. J. Dairy Sci., 65, 953–62.

    PubMed  CAS  Google Scholar 

  • Rogers, J. A., Davis, C. L. and Clark, J. H. (1982). Alteration of rumen fermentation, milk fat synthesis and nutrient utilization with minerals salts in dairy cows. J. Dairy Sci., 65, 577–86.

    PubMed  CAS  Google Scholar 

  • Rogers, J. A., Branine, M. E., Miller, C. R. et al. (1995). Effects of dietary virginiamycin on performance and liver abscesses incidence in feedlot cattle. J. Anim. Sci., 73, 9–20.

    PubMed  CAS  Google Scholar 

  • Rogers, M., Jouary, J. P., Thivend, P. and Fontenot, J. P. (1991). Comparative effects of feeding and duodenal infusion of monensin on digestion in sheep. Can. J. Anim. Sci., 71, 1125–33.

    CAS  Google Scholar 

  • Rogers, P. A. M. and Hope-Cawdery, M. J. (1980). Monensin, ketosis and nitrate toxicity in cows. Vet. Rec., 106, 311–12.

    PubMed  CAS  Google Scholar 

  • Rose, A. H. (1987). Yeast culture, a microorganism for all species: a theoretical look at its mode of action. In Biotechnology in the Feed Industry, ed. T. P. Lyons. Alltech Technical Publications, Nicholasville, Kentucky, pp. 113–18.

    Google Scholar 

  • Rowe, J. B. (1985). Manipulation of the rumen microbial ecosystem for increased efficiency of feed utilization. Rev. Rural Sci., 6, 101–8.

    Google Scholar 

  • Rowe, J. B., Morrell, J. S. W. and Broome, A. W. (1982). Flavomycin as a ruminant growth promoter: investigation of the mode of action. Proc. Nutr. Soc., 41, 56A.

    Google Scholar 

  • Rowe, J. B., Davies, A. and Brome, A. W. J. (1983). Changing rumen fermentation by chemical means. In Recent Advances in Animal Nutrition in Australia, 1983, ed. D. J. Farrell and P. Vohra. University of New England Publishing Unit, Armidale, pp. 102–9.

    Google Scholar 

  • Rowe, J. B., Murray, R. J., and Godfrey, S. I. (1991). Manipulation of fermentation and digestion to optimize the use of forage resources for ruminant production. In Isotope and Related Techniques in Animal Production and Health. International Atomic Energy Agency, Vienna, pp. 83–99.

    Google Scholar 

  • Ruckebusch, Y. (1983). Pharmacology of reticulo-ruminal motor function. J. Vet. Pharmacol. Ther., 6, 245–72.

    PubMed  CAS  Google Scholar 

  • Ruckebusch, Y., Ooms, L. A. A., Degryse, A. D. and Allal, C. (1985). Alleviation of excessive gas accumulation in the ruminant stomach by ritanicerin. Am. J. Vet. Res., 46, 434–7.

    PubMed  CAS  Google Scholar 

  • Rumpler, W. V., Johnson, D. E. and Bates, D. B. (1986). The effect of high dietary cation concentration on methanogenesis by steers fed diets with and without ionophores. J. Anim. Sci., 62, 1737–41.

    PubMed  CAS  Google Scholar 

  • Rumsey, T. S., Bitman, J., Wrenn, T. R. et al. (1982). Performance, ruminal fermentation and blood constituents of lambs fed N, N-dimethyldodecanamine and chlortetracycline. J. Anim. Sci., 54, 1040–50.

    CAS  Google Scholar 

  • Rusoff, L. L., Landogora, F. T. and Hester, H. H. (1954). Effect of aureomycin on certain blood constituents, body temperature, weights of organs and tissues and thickness of small intestines. J. Dairy Sci., 37, 654(Abstract).

    Google Scholar 

  • Russell, J. B. (1987). A proposed model of monensin action in inhibiting rumen bacterial growth: effects on ion flux and proton motive force. J. Anim. Sci., 64, 1519–25.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Chow, J. M. (1993). Another theory for the action of ruminal buffer salts: decreased starch fermentation and propionate production. J. Dairy Sci., 76, 826–30.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Martin, S. A. (1984). Effects of various methane inhibitors on the fermentation of amino acids by mixed rumen microorganisms in vitro. J. Anim. Sci., 59, 1329–38.

    CAS  Google Scholar 

  • Russell, J. B. and Sniffen, C. J. (1984). Effect of carbon-4 and carbon-5 volatile fatty acids on growth of mixed rumen bacteria in vitro. J. Dairy Sci., 67, 987–94.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Strobel, H. J. (1988). Effect of additives on in vitro ruminal fermentation: a comparison of monensin and bacitracin, another gram positive antibiotic. J. Anim. Sci., 66, 552–8.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Strobel, H. J. (1989). Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol., 55, 1–6.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Van Soest, P. J. (1984). In vitro ruminal fermentation of organic acids common in forage. Appl. Environ. Microbiol., 47, 155–9.

    PubMed  CAS  Google Scholar 

  • Russell, J. B., Bottje, W. G. and Cotta, M. A. (1981). Degradation of protein by mixed cultures of rumen bacteria: identification of Streptococcus bovis as an actively proteolytic rumen bacterium. J. Anim. Sci., 53, 242–52.

    PubMed  CAS  Google Scholar 

  • Russell, J. B., Strobel, H. J. and Chen, G. (1988). The enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl. Environ. Microbiol., 54, 872–7.

    PubMed  CAS  Google Scholar 

  • Russell, J. R., Young, A. W. and Jorgensen, N. A. (1980). Effect of sodium bicarbonate and limestone additions to high grain diets on feedlot performance and ruminal and fecal parameters in finishing steers. J. Anim. Sci., 51, 996–1002.

    CAS  Google Scholar 

  • Ryan, J. P. and Gray, W. R. (1990). Effect of high strength yeast culture ab initio utilizes a residual source of volatile fatty acids in strained ruminal fluid from hay fed sheep. Biochem. Soc. Trans., 18, 392–3.

    Google Scholar 

  • Ryu, D. D. Y. (1989). Enhancement of nutritional value of cellulosic feed resources by pretreatment and feed bioconversion. In Biotechnology for Livestock Production, Plenum Press, New York, pp. 223–43.

    Google Scholar 

  • Sakauchi, R. and Hoshino, S. (1981). Effects of monensin on ruminal fluid viscosity, pH, volatile fatty acids and ammonia levels, and microbial activity and population in healthy and bloated feedlot steers. Z. Tierphysiol. Tieremah. Futtermittel., 46, 21–33.

    CAS  Google Scholar 

  • Sanson, D. W. and Stallcup, O. T. (1984). Growth response and serum constituents of Holstein bulls fed malic acid. Nutr. Rep. Int., 30, 1261–7.

    CAS  Google Scholar 

  • Sauer, F. D. and Teather, R. M. (1987). Changes in oxidation-reduction potentials and volatile fatty acid production by rumen bacteria when methane synthesis is inhibited. J. Dairy Sci., 70, 1835–40.

    PubMed  CAS  Google Scholar 

  • Sauer, F. D., Kramer, J. K. G. and Cantwell, W. J. (1989). Antiketogenic effects of monensin in early lactation. J. Dairy Sci., 72, 436–42.

    PubMed  CAS  Google Scholar 

  • Savage, D. C. (1986). Gastrointestinal microflora in mammalian nutrition. Annu. Rev. Nutr., 6, 155–78.

    PubMed  CAS  Google Scholar 

  • Sawyer, M. S., Hoover, W. H. and Sniffen, C. J. (1974). Effects of a ruminal methane inhibitor on growth and energy metabolism in the ovine. J. Anim. Sci., 38, 908–14.

    PubMed  CAS  Google Scholar 

  • Scanlan, C. M. and Hathcock, T. L. (1983). Bovine rumenitis-liver abscess complex: a bacteriological review. Cornell Vet., 73, 288–97.

    PubMed  CAS  Google Scholar 

  • Schaefer, D. M., Wheeler, L. J., Noller, C. H. et al. (1982). Neutralization of acid in the rumen by magnesium oxide and magnesium carbonate. J. Dairy Sci., 65, 732–9.

    PubMed  CAS  Google Scholar 

  • Schaetzel, W. P. and Johnson, D. E. (1981). Nicotinic acid and dilution rate effects on in vitro fermentation efficiency. J. Anim. Sci., 63, 1104–8.

    Google Scholar 

  • Schauff, D. J. and Clark, J. H. (1992). Effects of feeding diets containing calcium salts of long chain fatty acids to lactating dairy cows. J. Dairy Sci., 75, 2990–3002.

    PubMed  CAS  Google Scholar 

  • Schelling, G. T. (1984a). Mode of action in manipulating rumen function. In Manipulation of Growth in Farm Animals, ed. J. F. Roche and D. O. Callaghan. Martinas Nijhoff Publishers, Boston, pp. 184–207.

    Google Scholar 

  • Schelling, G. T. (1984b). Monensin mode of action in the rumen. J. Anim. Sci., 58, 1518–27.

    PubMed  CAS  Google Scholar 

  • Schussler, S. L., Fahey, G. C. Jr, Robinson, J. B. et al. (1978). The effect of supplemental niacin on in vitro cellulose digestion and protein synthesis. Int. J. Vitam. Nutr. Res., 48, 359–67.

    PubMed  CAS  Google Scholar 

  • Schwab, C. G. (1995). Protected proteins and amino acids for ruminants. In Biotechnology in Animal Feeds and Animal Feeding, ed. R. J. Wallace and A. Chesson. VCH Publishers, New York, pp. 115–41.

    Google Scholar 

  • Scott, T. W. and Ashes, J. R. (1993). Dietary lipids for ruminants: protection, utilization, and effects on remodeling of skeletal muscle phospholipids. Aust. J. Agric. Res., 44, 495–508.

    CAS  Google Scholar 

  • Scott, T. W., Cook, L. J. and Mills, S. C. (1971). Protection of dietary polyunsaturated fatty acids against microbial hydrogenation in ruminants. J. Am. Oil Chem. Soc., 48, 358–64.

    CAS  Google Scholar 

  • Shell, L. A., Hale, W. H., Theurer, B. and Swingle, R. S. (1983). Effect of monensin on total volatile fatty acid production by steers fed a high grain diet. J. Anim. Sci., 57, 178–85.

    PubMed  CAS  Google Scholar 

  • Sheu, C. W. and Freese, E. (1973). Lipopolysaccharide layer protection of gram-negative bacteria against inhibition by long-chain fatty acids. J. Bacteriol., 113, 869–75.

    Google Scholar 

  • Shields, D. R., Schaefer, D. M. and Perry, T. W. (1983). Influence of niacin supplementation and nitrogen source on rumen microbial fermentation. J. Anim. Sci., 57, 1576–83.

    CAS  Google Scholar 

  • Shumard, R. F. and Callender, M. E. (1968). Monensin, a new biologically active compound VI. Anti-coccidial activity. Antimicrob. Agents Chemother., 1968, 369–77.

    Google Scholar 

  • Siciliano-Jones, J. and Murphy, M. R. (1989). Production of volatile fatty acids in the rumen and cecum-colon of steers as affected by forage-concentrate and forage physical form. J. Dairy Sci., 72, 485–92.

    PubMed  CAS  Google Scholar 

  • Sievert, S. J. and Shaver, R. D. (1993). Effect of nonfiber carbohydrate level and Aspergillus oryzae fermentation extract on intake, digestion and milk production in lactating dairy cows. J. Anim. Sci., 71, 1032–40.

    PubMed  CAS  Google Scholar 

  • Simpson, M. E. (1980). Effect of added antibiotics on in vitro rate and extent of digestion of a wheat-straw cell wall preparation. J. Anim. Sci., 51(Suppl. 1), 394(Abstract).

    Google Scholar 

  • Sklan, D., Ruth, A., Braun, A. et al. (1992). Fatty acids, calcium soaps of fatty acids, and cottonseeds fed to high yielding cows. J. Dairy Sci., 75, 2463–72.

    PubMed  CAS  Google Scholar 

  • Skrivanova, V. and Machanova, L. (1990). The influence of Lactobacillus acidophilus probiotics on efficiency and parameters of rumen fluid in calves. Zivocisna Vyroba., 35, 87–94.

    Google Scholar 

  • Skrivanova, V. and Marounek, M. (1993). Effect of virginiamycin on feed intake, daily gains, ruminal volatile fatty acids and blood parameters in veal calves. Arch. Anim. Nutr., 44, 41–6.

    CAS  Google Scholar 

  • Slyter, L. L. (1976). Influence of acidosis on rumen function. J. Anim. Sci., 43, 910–29.

    PubMed  CAS  Google Scholar 

  • Slyter, L. L. (1979). Monensin and dichloracetamide influences on methane and volatile fatty acid production by rumen bacteria in vivo. Appl. Environ. Microbiol., 37, 283–8.

    PubMed  CAS  Google Scholar 

  • Smith, N. E. (1988). Alteration of efficiency of milk production in dairy cows by manipulation of the diet. In Nutrition and Lactation in the Dairy Cow, ed. P. C. Garnsworthy. Butterworths, London, pp. 216–31.

    Google Scholar 

  • Smith, S. I. and Boling, J. A. (1983). Captan administration and nutrient utilization in ruminants. Nutr. Rep. Int., 27, 969–76.

    CAS  Google Scholar 

  • Sparling, R. and Daniels, L. (1987). The specificity of growth inhibition of methanogenic bacteria by bromoethanesulfonate. Can. J. Microbiol., 33, 1132–6.

    CAS  Google Scholar 

  • Spears, J. W. (1990). Ionophores and nutrient digestion and absorption in ruminants. J. Nutr., 120, 632–8.

    PubMed  CAS  Google Scholar 

  • Spears, J. W., Burns, J. C. and Wolfrom, G. W. (1989). Lysocellin effects of growth performance, ruminal fermentation, nutrient digestibility and nitrogen metabolism in steers fed forage diets. J. Anim. Sci., 67, 547–56.

    PubMed  CAS  Google Scholar 

  • Spires, H. R. and Algeo, J. W. (1983). Laidlomycin butyrate — an ionophore with enhanced intraruminal activity. J. Anim. Sci., 57, 1553–60.

    PubMed  CAS  Google Scholar 

  • Spires, H. R., Olmeted, A., Berger, L. L. et al. (1990). Efficacy of laidlomycin propionate for increasing rate and efficiency of gain by feedlot cattle. J. Anim. Sci., 68, 3382–91.

    PubMed  CAS  Google Scholar 

  • Stack, R. J. and Cotta, M. A. (1986). Effect of 3-phenylpropanoic acid on growth of, and cellulose utilization by, cellulolytic ruminal bacteria. Appl. Environ. Microbiol., 52, 209–10.

    PubMed  CAS  Google Scholar 

  • Stack, R. J. and Hungate, R. E. (1984). Effect of 3-phenylpropanoic acid on capsule and cellulases of Ruminococcus albus 8. Appl. Environ. Microbiol., 48, 218–23.

    PubMed  CAS  Google Scholar 

  • Stack, R. J., Hungate, R. E. and Opsahl, W. P. (1983). Phenylacetic acid stimulation of cellulose digestion by Ruminococcus albus 8. Appl. Environ. Microbiol., 46, 539–44.

    PubMed  CAS  Google Scholar 

  • Stallcup, O. T. (1979). Influence of addition of DL-malic acid to diets of lactating dairy cows. J. Dairy Sci., 62(Suppl. 1), 225(Abstract).

    Google Scholar 

  • Starnes, S. R., Spears, J. W., Froetschel, M. A. and Croom, W. J. (1984). Influence of monensin and lasalocid on mineral metabolism and ruminal urease activity in steers. J. Nutr., 114, 518— 25.

    PubMed  CAS  Google Scholar 

  • Stewart, C. S. and Duncan, S. H. (1985). The effect of avoparcin on cellulolytic bacteria of the ovine rumen. J. Gen. Microbiol., 131, 427–35.

    CAS  Google Scholar 

  • Stewart, C. S. and Richardson, A. J. (1989). Enhanced resistance of anaerobic rumen fungi to the ionophores monensin and lasalocid in the presence of methanogenic bacteria. J. Appl. Bacteriol., 66, 85–93.

    PubMed  CAS  Google Scholar 

  • Stewart, C. S., Crossley, M. V. and Garrow, S. H. (1983). The effect of avoparcin on laboratory cultures of rumen bacteria. Eur. J. Appl. Microbiol. Biotechnol., 17, 292–7.

    CAS  Google Scholar 

  • Stewart, C. S., McPherson, C. A. and Cansunar, E. (1987). The effect of lasalocid on glucose uptake, hydrogen production and the solubilization of straw by the anaerobic fungus Neocallimastix frontalis. Lett. Appl. Microbiol., 5, 5–7.

    CAS  Google Scholar 

  • Stock, R. A., Brink, D. R., Britton, R. A. et al. (1987). Feeding combinations of high moisture corn and dry-rolled grain sorghum to finishing steers. J. Anim. Sci., 65, 290–302.

    Google Scholar 

  • Stock, R. A., Laudert, S. B., Stroup, W. W. et al. (1995). Effect of monensin and tylosin combination on feed intake variation of feedlot steers. J. Anim. Sci., 73, 39–44.

    PubMed  CAS  Google Scholar 

  • Stokes, M. R. (1983). Effect of sodium bicarbonate on rumen turnover in frequently fed sheep. Can. J. Anim. Sci., 63, 721–5.

    CAS  Google Scholar 

  • Stokes, M. R., Bull, L. S. and Halteman, W. A. (1985). Rumen liquid dilution rate in dairy cows fed once daily: effects of diet and sodium bicarbonate supplementation. J. Dairy Sci., 68, 1171–80.

    PubMed  CAS  Google Scholar 

  • Strobel, H. J. (1992). Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23. Appl. Environ. Microbiol., 58, 2331–3.

    PubMed  CAS  Google Scholar 

  • Strobel, H. J., Chow, J. M. and Russell, J. B. (1989). Ruminal ionophores: manipulating fermentation and control of acidosis. In Cornell Nutrition Conference Proceedings. Cornell University, Ithaca, New York, pp. 16–21.

    Google Scholar 

  • Stromberg, B. E., Schlotthauer, J. C., Armstrong, B. D. et al. (1982). Efficacy of lasalocid sodium in the control of coccidiosis (Eimeria bovis and Eimeria zuernii) in calves. Am. J. Vet. Res., 43, 583–5.

    PubMed  CAS  Google Scholar 

  • Stuart, R. L. (1982). Comparison of Bovatec to Rumensin for feedlot cattle. In Bovatec Symposium Proceedings, ed. R. L. Stuart and C. R. Zimmerman. Hoffmann-La Roche Inc., Nutley, New Jersey, pp. 85–6.

    Google Scholar 

  • Sutton, J. D., Smith, R. H., McAllan, A. B. et al. (1975). Effect of variations in dietary protein and of supplements of cod liver oil on energy digestion and microbial synthesis in rumen of sheep fed hay and concentrates. J. Agric. Sci. (Camb.), 84, 317–326.

    Google Scholar 

  • Sutton, J. D., Knight, R., McAllan, A. B. and Smith, R. H. (1983). Digestion and synthesis in the rumen of sheep given diets supplemented with free and protected oils. Br. J. Nutr., 49, 419–32.

    PubMed  CAS  Google Scholar 

  • Tabe, L. M., Wardley-Richardson, T., Ceriott, A. et al. (1995). A biotechnological approach to improving the nutritive value of alfalfa. J. Anim. Sci., 73, 2752–9.

    PubMed  CAS  Google Scholar 

  • Tamminga, S., Van Vuuren, A. M., Van der Koelen, C. J. et al. (1983). Further studies on the effect of fat supplementation of concentrates fed to lactating dairy cows. 3. Effect on rumen fermentation and site of digestion of dietary components. Neth. J. Agric. Sci., 31, 249–58.

    Google Scholar 

  • Tan, Z. L., Nagaraja, T. G. and Chengappa, M. M. (1994). Biochemical and biological characterization of ruminal Fusobacterium necrophorum. FEMS Microbiol. Lett., 120, 81–6.

    PubMed  CAS  Google Scholar 

  • Tan, Z. L., Nagaraja, T. G. and Chengappa, M. M. (1996). Fusobacterium necrophorum infections: virulence factors, pathogenic mechanism and control measures. Vet. Res. Commun., 20, 113–40.

    PubMed  CAS  Google Scholar 

  • Tapia, M. N., Herrera-Saldana, R., Mex, S. et al. (1989). The effect of four fungal compounds as probiotics on in vitro dry matter disappearance of different feedstuffs. Anim. Sci., 67(Suppl 1)., 521(Abstract).

    Google Scholar 

  • Teh, T. H., Hemken, R. W. and Harmon, R. J. (1985). Comparison of buffers and their modes in the rumen and abomasum. Nutr. Rep. Int., 32, 1339–48.

    CAS  Google Scholar 

  • Thalib, A., Widiawati, Y., Hamid, H. et al. (1995). The effects of saponins from Sapindus rarak fruit on rumen microbes and host animal growth. Ann. Zootech., 44, 161.

    Google Scholar 

  • Theodorou, M. K., Beever, D. E., Haines, M. J. and Brooks, A. (1990). The effect of a fungal probiotic on intake and performance of early weaned calves. Anim. Prod., 53, 577(Abstract).

    Google Scholar 

  • Theuninck, D. H., Goodrich, R. D. and Meiske, J. C. (1981). Influence of captan on in vitro and in vivo digestibility of forage. J. Anim. Sci., 52, 377–81.

    PubMed  CAS  Google Scholar 

  • Theurer, C. B. (1986). Grain processing effects on starch utilization by ruminants. J. Anim. Sci., 63, 1649–62.

    PubMed  CAS  Google Scholar 

  • Thivend, P. and Jouany, J. P. (1986). New developments and future perspectives in research on rumen function: additives. In New Developments and Future Perspectives in Research on Rumen Function, ed. A. Neimann-Sorensen. EEC Publishers, Brussels, pp. 199–215.

    Google Scholar 

  • Thomas, J. W. and Emery, R. S. (1969). Additive nature of sodium bicarbonate and magnesium oxide on milk fat concentrations of milking cows fed restricted-roughage rations. J. Dairy Sci., 52, 1762–9.

    CAS  Google Scholar 

  • Thomas, J. W., Emery, R. S., Breaux, J. K. and Liesman, J. S. (1984). Response of milking cows fed a high concentrate, low roughage diet plus sodium bicarbonate, magnesium oxide or magnesium hydroxide. J. Dairy Sci., 67, 2532–45.

    PubMed  CAS  Google Scholar 

  • Thomas, P. C. and Rook, J. A. F. (1977). Manipulation of rumen fermentation. In Recent Advances in Animal Nutrition, ed. W. Haresign and D. J. A. Cole. Butterworths, London, pp. 157–83.

    Google Scholar 

  • Thomson, D. J. and Beever, D. E. (1980). The effect of conservation and processing on the digestion of forages by ruminant. In Digestive Physiology and Metabolism in Ruminants, ed. Y. Ruckebusch and P. Thivend. MTP Press, Lancaster, pp. 291–308.

    Google Scholar 

  • Thomson, D. J., Beever, D. E., Latham, M. J. et al. (1978). The effect of inclusion of mineral salts in the diet on dilution rate, the pattern of rumen fermentation and the composition of the rumen microflora. J. Agric. Sci., 91, 1–7.

    CAS  Google Scholar 

  • Thornton, J. H. and Owens, F. N. (1981). Monensin supplementation and in vivo methane production by steers. J. Anim. Sci., 52, 628–34.

    PubMed  CAS  Google Scholar 

  • Titchen, D. A., Reid, C. S. W. and Vlieg, P. (1966). Effects of intra duodenal infusions of fat on the food intake of sheep. NZ Soc. Anim. Prod. Proc., 26, 36–50.

    Google Scholar 

  • Towne, G., Nagaraja, T. G., Brandt, Jr, R. T. and Kemp, K. E. (1990). Ruminal ciliated protozoa in cattle fed finishing diets with or without supplemental fat. J. Anim. Sci., 68, 2150–5.

    PubMed  CAS  Google Scholar 

  • Towne, G., Nagaraja, T. G., Brandt, Jr, R. T. and Gramlich, S. M. (1991). Effects of supplemental tallow on rumen ciliated protozoa in feedlot cattle. Arch. Anim. Nutr. Berlin, 41, 203–7.

    CAS  Google Scholar 

  • Trei, J. E., Parish, R. C., Singh, Y. K. and Scott, G. C. (1971). Effect of methane inhibitors on rumen metabolism and feedlot performance of sheep. J. Dairy Sci., 54, 536–40.

    PubMed  CAS  Google Scholar 

  • Trei, J. E., Scott, G. C. and Parish, R. C. (1972). Influence of methane inhibition on energetic efficiency of lambs. J. Anim. Sci., 34, 510–15.

    PubMed  CAS  Google Scholar 

  • Tremere, A. W., Merrill, W. G. and Loosli, J. K. (1968). Adaptation to high concentrate feeding as related to acidosis and digestive disturbances in dairy heifers. J. Dairy Sci., 51, 1065–72.

    PubMed  CAS  Google Scholar 

  • Trenkle, A. H. (1979a). Sodium Bicarbonate in Beef Nutrition. National Feed Ingredients Association, Des Moines, IA.

    Google Scholar 

  • Trenkle, A. H. (1979b). The relationship between acid-base balance and protein metabolism in ruminants. In Regulation of Acid-Base Balance, ed. W. H. Hale and P. Meinhardt. Church and Dwight Co. Inc., Piscataway, NJ, pp. 146–57.

    Google Scholar 

  • Tucker, W. B., Hogue J. F., Aslam, M. et al. (1992). A buffer value index to evaluate effects of buffers on ruminai milieu in cows fed high or low concentrate, silage, or hay diets. J. Dairy Sci., 75, 811–19.

    PubMed  CAS  Google Scholar 

  • Tung, R. S. and Kung, L. Jr (1993). In vitro effects of a thiopeptide and monensin on ruminai fermentation of soluble carbohydrates. J. Dairy Sci., 76, 1083–90.

    PubMed  CAS  Google Scholar 

  • Tung, R. S., Kung, L. Jr and Slyter, L. L. (1992). In vitro effects of the thiopeptide A10255 on ruminai fermentation and microbial populations. J. Dairy Sci., 75, 2494–503.

    PubMed  CAS  Google Scholar 

  • Turner, A. W. and Hodgetts, V. E. (1952). Depression of ruminai digestion in adult sheep by aureomcin. Aust. J. Agric. Res., 3, 453–9.

    CAS  Google Scholar 

  • Unsworth, E. F., McCullough, 1.1., McCullough, T. A. etal. (1985). The effect of avoparcin and monensin on the performance of growing and finishing cattle offered grass silage-based diets. Anim. Prod., 41, 75–82.

    CAS  Google Scholar 

  • Ushida, K. and Jouany, J. P. (1985). Effect of protozoa on rumen protein degradation in sheep. Reprod. Nutr. Dev., 25, 1075–81.

    PubMed  CAS  Google Scholar 

  • Valdez, F. R., Bush, L. J., Goestch, A. L. and Owens, F. N. (1986). Effect of steroidal sapogeninis on ruminai fermentation and on production of lactating dairy cows. J. Dairy Sci., 69, 1568–75.

    PubMed  CAS  Google Scholar 

  • Van Campen, D. (1976). Effects of buffers on ruminai acids. In Buffers in Ruminant Physiology and Metabolism, ed. M. S. Weinberg and A. L. Sheffner. Church and Dwight Co. Inc., New Jersey, pp. 82–95.

    Google Scholar 

  • Van der Honing, Y. and Tamminga, S. (1986). Effect of fat on rumen fermentation and gastrointestinal absorption. In New Developments and Future Perspectives in Research on Rumen Function, ed. A. Niemann-Sorensen. Commission of the European Communities, Denmark, pp. 55–68.

    Google Scholar 

  • Van der Honing, Y., Wieman, B. J., Steg, A. and Van Donselaar, B. (1981). The effect of fat supplementation of concentrates on digestion and utilization of energy by productive dairy cows. Neth. J. Agric. Sci., 29, 79–92.

    Google Scholar 

  • Van der Honing, Y., Tamminga, S., Wieman, B. J. et al. (1983). Further studies on the effect of fat supplementation of concentrates fed to lactating dairy cows. 2. Total digestion and energy utilization. Neth. J. Agric. Sci., 31, 27–36.

    Google Scholar 

  • Van Horn, H. H., Harris, B., Taylor, M. J. et al. (1984). By-product feeds for lactating dairy cows: effects of cottonseed hulls, sunflower hulls, corrugated paper, peanut hulls, sugercane bagasse and whole cottonseed with additives of fat, sodium bicarbonate and Aspergillus oryzae product on milk production. J. Dairy Sci., 61, 2922–38.

    Google Scholar 

  • Van Maanen, R. W., Harbein, J. H., McGilliard, A. D. and Young, J. W. (1978). Effects of monensin on in vitro rumen propionate production and blood glucose kinetics in cattle. J. Nutr., 8, 1002–7.

    Google Scholar 

  • Van Nevel, C. J. (1991). Modification of rumen fermentation by the use of additives. In Rumen Microbial Metabolism and Ruminant Digestion, ed. J. P. Jouany. INRA Editions, Paris, pp. 263–80.

    Google Scholar 

  • Van Nevel, C. J. and Demeyer, D. I. (1971). Effect of fatty acid derivatives on rumen methane and propionate in vitro. Appl. Microbiol., 21, 365–6.

    Google Scholar 

  • Van Nevel, C. J. and Demeyer, D. I. (1977). Effect of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol., 34, 251–7.

    PubMed  Google Scholar 

  • Van Nevel, C. J. and Demeyer, D. I. (1981). Effect of methane inhibitors on the metabolism of rumen microbes in vitro. Arch. Tierernäh., 31, 141–51.

    Google Scholar 

  • Van Nevel, C. J. and Demeyer, D. I. (1988). Manipulation of rumen fermentation. In The Rumen Microbial Ecosystem, ed. P. N. Hobson, Elsevier Applied Science, New York, pp. 387–443.

    Google Scholar 

  • Van Nevel, C. J. and Demeyer, D. I. (1990). Effect of antibiotics, a deaminase inhibitor and sarsaponin on nitrogen metabolism of rumen content in vitro. Anim. Fd Sci. Technol., 31, 323–48.

    Google Scholar 

  • Van Nevel, C. J. and Demeyer, D. I. (1992). Influence of antibiotics and a deaminase inhibitor on volatile fatty acids and methane production from detergent washed hay and soluble starch by rumen microbes in vitro. Anim. Fd Sei. Technol., 37, 21–31.

    Google Scholar 

  • Van Nevel, C. J. and Demeyer, D. I. (1995a). Feed additives and other interventions for decreasing methane emissions. In Biotechnology in Animal Feeds and Animal Feeding, ed. R. J. Wallace and A. Chesson. VCH, Weinheim, pp. 329–49.

    Google Scholar 

  • Van Nevel, C. J. and Demeyer, D. I. (1995b). Lipolysis and biohydrogenation of soybean oil in the rumen in vitro: inhibition by antimicrobials. J. Dairy Sci., 78, 2797–806.

    PubMed  Google Scholar 

  • Van Nevel, C. J., Demeyer, D. I., Cottyn, B. G. and Henderickx, H. K. (1970). Effect of sodium sulphite on methane and propionate in the rumen. Z. Tierphysiol. Tierernäh. Futtermittel., 26, 91–100.

    Google Scholar 

  • Van Nevel, C. J., Demeyer, D. I. and Hendrickx, H. K. (1984). Effect of virginiamycin on carbohydrate and protein metabolism in the rumen in vitro. Arch. Tierernäh. Berlin, 2, 149–55.

    Google Scholar 

  • Varel, V. H. and Hashimoto, A. G. (1982). Methane production by fermentor cultures acclimated to waste from cattle fed monensin, lasalocid, salinomycin or avoparcin. Appl. Environ. Microbiol., 44, 1415–20.

    PubMed  CAS  Google Scholar 

  • Varel, V. H. and Kreikemeier, K. K. (1993). Influence of feeding Aspergillus oryzae fermentation extract (Amaferm) on in situ fiber degradation, ruminal parameters and bacteria in non-lactating cows fed alfalfa or bromegrass hay. J. Anim. Sci., 71, 287(Abstract).

    Google Scholar 

  • Varel, V. H. and Kreikemeier, K. K. (1994). Response to various amounts of Aspergillus oryzae fermentation extract on ruminal metabolism in cattle. J. Dairy Sci., 77, 3081–6.

    PubMed  CAS  Google Scholar 

  • Varel, V. H., Kreikemeier, K. K., Jung, H. G. and Hatfield, R. D. (1993). In vitro stimulation of forage fiber degradation by ruminal microorganisms with Aspergillus oryzae fermentation extract. Appl. Environ. Microbiol., 59, 3171–6.

    PubMed  CAS  Google Scholar 

  • Visek, W. J. (1978). The mode of growth promotion by antibiotics. J. Anim. Sci., 46, 1447–64.

    Google Scholar 

  • Viviani, R. (1970). Metabolism of long chain fatty acids in the rumen. Adv. Lipid Res., 8, 267–345.

    PubMed  CAS  Google Scholar 

  • Wahle, K. W. J. and Livesay, C. T. (1985). The effect of monensin supplementation of dried grass or barley diets on aspects of propionate metabolism, insulin secretion and lipogenesis in the sheep. J. Sci. Fd Agric., 36, 1227–36.

    CAS  Google Scholar 

  • Wakita, M. and Hoshino, S. (1987). Effect of sugar fatty acid esters on rumen fermentation in vitro. Br. J. Nutr., 58, 493–502.

    PubMed  CAS  Google Scholar 

  • Waldrip, H. M. and Martin, S. A. (1993). Effects of an Aspergillus oryzae fermentation extract and other factors on lactate utilization by the ruminal bacterium Megasphaera elsdenii. J. Anim. Sci., 71, 2770–6.

    PubMed  CAS  Google Scholar 

  • Wall, M. E., Krider, M. M., Krewson, C. F. et al. (1954). Steroidal saponins. VII. Survey of plants for steroidal sapogenins and other constituents. J. Am. Pharmaceutical Assoc., 43, 1–7.

    Google Scholar 

  • Wallace, H. D. (1970). Biological responses to antibacterial feed additives in diets of meat producing animals. J. Anim. Sci., 31, 1118–26.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1992). Acetylation of peptides inhibits their degradation by rumen microorganisms. Br. J. Nutr., 68, 365–72.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1994). Ruminal microbiology, biotechnology, and ruminant nutrition: progress and problems. J. Anim. Sci., 72, 2992–3003.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. and Cotta, M. A. (1988). Metabolism of nitrogen-containing compounds. In The Rumen Microbial Ecosystem, ed. P. N. Hobson. Elsevier Applied Science, London, pp. 217–50.

    Google Scholar 

  • Wallace, R. J. and Joblin, K. N. (1985). Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiol. Lett., 29, 19–25.

    CAS  Google Scholar 

  • Wallace, R. J. and McPherson, C. A. (1987). Factors affecting the rate of breakdown of bacterial protein in rumen fluid. Br. J. Nutr., 59, 313–23.

    Google Scholar 

  • Wallace, R. J. and Newbold, C. J. (1992). Probiotics for ruminants. In Probiotics: The Scientific Basis, ed. R. Fuller. Chapman and Hall, London, pp. 317–53.

    Google Scholar 

  • Wallace, R. J. and Newbold, C. J. (1993). Rumen fermentation and its manipulation: the development of yeast cultures as feed additives. In Biotechnology in the Feed Industry, ed. T. P. Lyons. Alltech Technical Publications, Kentucky, pp. 173–92.

    Google Scholar 

  • Wallace, R. J., Czerkawski, J. W. and Breckenridge, G. (1981). Effect of monensin on the fermentation of basal rations in the rumen simulation technique (Rusitec). Br. J. Nutr., 114, 101–5.

    Google Scholar 

  • Wallace, R. J., Newbold, C. J. and McKain, N. (1990). Influence of ionophores and energy inhibitors on peptide metabolism by rumen bacteria. J. Agric. Sci. (Camb.), 115, 285–90.

    CAS  Google Scholar 

  • Wallace, R. J., Newbold, C. J., Watt, W. D. et al. (1993a). Amino acid composition of degradation-resistant peptides in extracellular ruminal fluid from sheep. J. Agric. Sci. (Camb.), 120, 129–33.

    CAS  Google Scholar 

  • Wallace, R. J., Frumholtz, P. P. and Walker, N. D. (1993b). Breakdown of N-terminally modified peptides and an isopeptide by rumen micro-organisms. Appl. Environ. Microbiol., 59, 3147–9.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J., Arthaud, L. and Newbold, C. J. (1994). Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl. Environ. Microbiol., 60, 1762–7.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J., Eschenlaver, S., Newbold, C. J. et al. (1995). Rumen bacteria capable of growth on peptides and amino acids as sole source of energy: numbers and their role in ammonia production. Annal. Zootech., 44, 147.

    Google Scholar 

  • Wallace, R. J., Newbold, C. J. and McKain, N. (1996). Inhibition by 1, 10-phenanthroline of the breakdown of peptides by rumen bacteria and protozoa. J. Appl. Bacteriol., 80, 425–30.

    PubMed  CAS  Google Scholar 

  • Walsh, J. H. and Stewart, C. S. (1969). A simple method for the assay of cellulolytic activity of fungi. Int. Biodet. Bull., 5, 15–20.

    CAS  Google Scholar 

  • Wanderley, R., AI-Dehneh, A., Theurer, C. B. et al. (1987). Fibre disappearance and nitrogen flow from the rumen of cows fed differing amounts of grain with or without fungal addition. J. Dairy Sci., 70, 180(Abstract).

    Google Scholar 

  • Wang, C. L., Baldwin, B. B., Fulghum, R. S. and Williams, P. P. (1969). Quantitative antibiotic sensitivities of ruminal bacteria. Appl. Microbiol., 18, 677–9.

    PubMed  CAS  Google Scholar 

  • Ward, N. E. (1986). Metabolic effects of vitamin B3 on dairy cow ketosis. Anim. Nutr. Health, April 18–21.

    Google Scholar 

  • Ware, D. R., Read, P. L. and Manfredi, E. T. (1988). Lactation performance of two large dairy herds fed Lactobacillus acidophilus strain BT 1386 in a switchback experiment. J. Dairy Sci., 71, 219(Abstract).

    Google Scholar 

  • Watanabe, K., Watanabe, J., Kuramitsu, S. and Maruyama, H. B. (1981). Comparison of the activity of ionophores with other antibacterial agents against anaerobes. Antimicrob. Agents Chemother., 19, 519–25.

    PubMed  CAS  Google Scholar 

  • Watkins, L. E., Wray, M. I., Basson, R. P. etal. (1986). The prophylactic effects of rumensin fed to cattle inoculated with coccidia oocysts. Agric. Pract., 7, 18–20.

    Google Scholar 

  • Wedegaertner, T. C. and Johnson, D. E. (1983). Monensin effects on digestibility, methanogenesis and heat increment of a cracked corn-silage diet fed to steers. J. Anim. Sci., 57, 168–77.

    PubMed  CAS  Google Scholar 

  • Weete, J. D., El Mozigith, A. and Touze-Soulet, J. M. (1989). Inhibition of growth, lipid, and sterol biosynthesis by monensin in fungi. Exp. My col., 13, 85–94.

    CAS  Google Scholar 

  • Weiss, W. P. and Amiet, B. A. (1990). Effect of lasalocid on performance of lactating dairy cows. J. Dairy Sci., 73, 153–62.

    PubMed  CAS  Google Scholar 

  • Welch, R. O. and Calza, R. E. (1993). Amaferm stimulates the growth of the rumen fungus Neocallimastix frontalis ED188. J. Anim. Sci., 71(Suppl. 1) 280(Abstract).

    Google Scholar 

  • West, J. W., Coppock, C. E., Nave, D. H. et al. (1987). Effects of potassium carbonate and sodium bicarbonate on rumen function in lactating Holstein cows. J. Dairy Sci., 70, 81–90.

    PubMed  CAS  Google Scholar 

  • Westley, J. W. (1977). Polyether antibiotics: versatile carboxylic acid ionophores produced by Streptomyces. Adv. Appl. Microbiol., 22, 177–223.

    PubMed  CAS  Google Scholar 

  • Westley, J. W. (1983). Notation and classification. In Polyether Antibiotics, Vol. 1, ed. J. W. Westley. Marcel Dekker, Inc., New York, pp. 1–20.

    Google Scholar 

  • Westvig, R. M., Caton, J. S. and Erickson, D. O. (1993). Influence of barley and Aspergillus oryzae fermentation extract supplementation on microbial efficiency, duodenal crude protein and amino acid flows, and digesta kinetics in steers fed prairie hay. J. Anim. Sci., 71(Suppl. 1), 287(Abstract).

    Google Scholar 

  • Whetstone, H. D., Davis, C. L. and Bryant, M. P. (1981). Effect of monensin on breakdown of protein by ruminal microorganisms in vitro. J. Anim. Sci., 53, 803–9.

    PubMed  CAS  Google Scholar 

  • White, T. W., Grainger, R. B., Baker, F. H. and Strand, J. W. (1958). Effect of supplemental fat on digestion and the ruminal calcium requirement of sheep. J. Anim. Sci., 17, 797–803.

    CAS  Google Scholar 

  • Wiedmeier, R. D., Arambel, M. J., Lamb, R. C. and Marcinkowski, D. P. (1987a). Effect of mineral salts, carbachol, and pilocarpine on nutrient digestibility and ruminal characteristics in cattle. J. Dairy Sci., 70, 592–600.

    PubMed  CAS  Google Scholar 

  • Wiedmeier, R. D., Arambel, M. J. and Walters, J. L. (1987b). Effect of orally administered pilocarpine on ruminal characteristics and nutrient digestibility in cattle. J. Dairy Sci., 70, 284–9.

    PubMed  CAS  Google Scholar 

  • Wiedmeier, R. D., Arambel, M. J. and Walters, J. L. (1987c). Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility. J. Dairy Sci., 70, 2063–8.

    PubMed  CAS  Google Scholar 

  • Wilkinson, J. I. D., Appleby, W. G. C., Shaw, C. J. et al. (1980). The use of monensin in European pasture cattle. Anim. Prod., 31, 159–62.

    Google Scholar 

  • Williams, A. P. and Cockburn, J. E. (1991). Effect of slowly and rapidly degraded protein sources on the concentrations of amino acids and peptides in the rumen of steers. J. Sci. Fd Agric., 56, 303–14.

    CAS  Google Scholar 

  • Williams, P. E. V., Walker, A. and MacRae, J. C. (1990). Rumen probiosis: the effects of addition of yeast culture (viable yeast (Saccharomyces cerevisiae) plus growth medium) on duodenal protein flow in wether sheep. Proc. Nutr. Soc., 49(Suppl. 1), 128A(Abstract).

    Google Scholar 

  • Williams, P. E. V., Tait, C. A. G., Innes, G. M. and Newbold, C. J. (1991). Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of sheep and steers. J. Anim. Sci., 69, 3016–26.

    PubMed  CAS  Google Scholar 

  • Witt, M. N. (1993). Effect of feeding acetylated peptides as a protein source on the growth rate of rats and fermentation in the ovine rumen. MSc thesis, University of Aberdeen.

    Google Scholar 

  • Wohlt, J. E., Jasaitis, D. K. and Evans, J. L. (1987). Use of acid base titrations to evaluate the buffering capacity of ruminant feedstuffs in vitro. J. Dairy Sci., 70, 1465–70.

    Google Scholar 

  • Wolfe, R. S. (1982). Biochemistry of methanogenesis. Experientia, 38, 198–200.

    CAS  Google Scholar 

  • Wolfrom, G. W. and Baldwin, C. D. (1986). The effects of lysocellin in the diets of finishing beef cattle. J. Anim. Sci., 63, 418(Abstract).

    Google Scholar 

  • Wolin, M. J. (1975). Interactions between the bacterial species of the rumen. In Digestion and Metabolism in the Ruminant, ed. I. W. McDonald and A. C. I. Warner. University of New England Publishing Unit, Armidale, pp. 134–48.

    Google Scholar 

  • Wolin, M. J. and Miller, T. L. (1983). Interactions of microbial populations in cellulose fermentation. Fed. Proc., 42, 109–13.

    PubMed  CAS  Google Scholar 

  • Wright, M. J. and Davison, K. C. (1964). Nitrate accumulation in crops and nitrate poisoning in animals. Adv. Agron., 16, 197–247.

    CAS  Google Scholar 

  • Wu, Z. and Palmquist, D. L. (1991). Synthesis and biohydrogenation of fatty acids by ruminal microorganisms in vitro. J. Dairy Sci., 74, 3035–46.

    PubMed  CAS  Google Scholar 

  • Wu, Z., Sadik, M., Sleiman, F. T. et al. (1994). Influence of Yucca extract on ruminal metabolism in cows. J. Anim. Sci., 72, 638–42.

    Google Scholar 

  • Xu, S., Harrison, J. H., Riley, R. E. and Loney, K. A. (1994). Effect of buffer addition to high grain total mixed rations on rumen pH, feed intake, milk production, and milk composition. J. Dairy Sci., 77, 782–8.

    PubMed  CAS  Google Scholar 

  • Yang, C. M. J. and Russell, J. B. (1993a). Effect of monensin on the specific activity of ammonia production and disappearance of amino nitrogen from the rumen. Appl. Environ. Microbiol., 59, 3250–4.

    PubMed  CAS  Google Scholar 

  • Yang, C. M. J. and Russell, J. B. (1993a). The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria. J. Anim. Sci., 71, 3470–6.

    PubMed  CAS  Google Scholar 

  • Yokoyama, M. T., Johnson, K. A., Dickerson, P. S. and Bergen, W. G. (1985). Effect of dietary monensin on the cecal fermentation of steers. J. Anim. Sci., 61, 469(Abstract).

    Google Scholar 

  • Yoon, I. K. and Stern, M. D. (1991). Influence of various levels of Lactobacillus acidophilus supplementation on fermentation by rumen microorganisms in continuous culture. In Proceedings of 21st Biennial Conference on Rumen Function, Chicago, IL, p. 35.

    Google Scholar 

  • Zelenak, I., Jalc, D., Kmet, V. and Siroka, P. (1994). Influence of diet and yeast supplement on in-vitro ruminal characteristics. Anim. Fd Sci. Technol., 49, 211–21.

    Google Scholar 

  • Zinn, R. A. (1988). Comparative feeding value of supplemental fat in finishing diets for feedlot steers supplemented with and without monensin. J. Anim. Sci., 66, 213–27.

    PubMed  CAS  Google Scholar 

  • Zinn, R. A. (1989). Influence of level and source of dietary fat in its comparative feeding value in finishing diets for steers: metabolism. J. Anim. Sci., 67, 1038–49.

    PubMed  CAS  Google Scholar 

  • Zinn, R. A. (1991). Comparative feeding value of steam-flaked corn and sorghum in finishing diets supplemented with or without sodium bicarbonate. J. Anim. Sci., 69, 105–16.

    Google Scholar 

  • Zinn, R. A. (1992). Influence of oral antibiotics on digestive function in holstein steers fed a 71% concentrate diet. J. Anim. Sci., 70, 213–17.

    Google Scholar 

  • Zinn, R. A. and Borques, J. L. (1993). Influence of sodium bicarbonate and monensin on utilization of a fat-supplemented, high-energy growing-finishing diet by feedlot steers. J. Anim. Sci., 71, 18–25.

    PubMed  CAS  Google Scholar 

  • Zinn, R. A., Owens, F. N., Stuart, R. L. et al. (1987). B-vitamin supplementation of diets for feedlot calves. J. Anim. Sci., 65, 267–77.

    PubMed  CAS  Google Scholar 

  • Zinn, R. A., Plascencia, A. and Borajes, R. (1994). Interaction of forage level and monensin in diets for feedlot cattle on growth performance and digestive function. J. Anim. Sci., 72, 2209–15.

    PubMed  CAS  Google Scholar 

  • Ziolecki, A., Kwatkowska, E. and Laskowska, H. (1984). The effect of stabilized rumen extract on growth and development of calves. 2. Digestive activity in the rumen and development of microflora in the rumen and faeces. Z. Tierphysiol. Tierernäh. Futtermittel., 51, 20–31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Nagaraja, T.G., Newbold, C.J., van Nevel, C.J., Demeyer, D.I. (1997). Manipulation of ruminal fermentation. In: Hobson, P.N., Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1453-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1453-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7149-9

  • Online ISBN: 978-94-009-1453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics