Skip to main content

Spinel Non-stoichiometry as the Explanation for Ni-, Cu- and PGE-enriched Sulphides in Chromitites

  • Chapter
Geo-Platinum 87

Abstract

High concentrations of PGE are associated with many chromitite layers in layered intrusions. The R-factor argument of Campbell et al. (1983) can explain the difference between the PGE concentrations in chromitite-hosted and Merensky-type PGE ores and the concentrations in magmatic sulphides that are less enriched in PGE. The very high concentrations of Ni and Cu also characteristic of chromititehosted sulphides are not explicable in this way. This has led Gain (1985) and von Gruenewaldt et al. (1986) to suggest that the original mass of these sulphides has been greatly reduced by the removal of Fe and S, with the consequent enrichment of other metals.

We suggest that the mechanism of Fe-loss from sulphide is that of Fe transferring to fill vacancies that exist in chromite crystallizing from basaltic magma.

Thermodynamic data for the reaction

$$4\!/\!3Fe_2O^{(spinel)}_3 + 1\!/\!3FeS = Fe_3O^{(spinel)}_4 + 1\!/\!6S_2$$
((1))

indicate that, on cooling from 1150 to 930°C, if the fS2 is buffered to that of sulphide cooling as a closed system, Fe-Ni-S sulphide containing 20 mole % NiS in equilibrium with chromite of the composition of the UG-2 can lose Fe to the chromite, using a high proportion of the available vacancies in the chromite at 1150°C. Depending on the mass ratio of the sulphide to chromite, the NiS content of the sulphide can be more than doubled.

Mass balance calculations indicate that if the sulphides of the UG-2 originally had the composition of those of the Merensky Reef (i.e. concentrations of 10·9% Ni, 4·65% Cu), augmenting this to their present concentrations would require the loss of 1578 ppm Fe, which would represent a gain in the mole fraction of Fe in the chromite of 1·8 × 10-3.

A simple model for spinel, including the various end-members with vacancies (i. e. those involving Al2O3 and Fe2O3), has been used to calculate the activities of these sesquioxides necessary for the spinel to contain a certain number of vacancies. When this model is used to calculate the vacancies needed to take up the Fe required to explain the enrichment in Cu, Ni and PGE in the Mandaagshoek section of the UG-2 (Gain, 1985), the calculated activities of Al2O3 and Fe2O3 are of the same order as those measured experimentally for basaltic melts at 1180°C and fO2 of less than the Ni-NiO buffer. The Mandaagshoek section is one of the most sulphide-rich encountered in the Bushveld chromitite layers, and, therefore, requires more Fe to be removed than most. Thus the model will also account for all of the chromitites containing less sulphide than this area of the UG-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Campbell, I. H. & Barnes, S.-J. (1984). A model for the geochemistry of platinum-group elements in magmatic sulfide deposits. Canad. Mineral., 22, 151–60.

    Google Scholar 

  • Campbell, I. H., Naldrett, A. J. & Barnes, S.-J. (1983). A model for the origin of platinum- rich horizons in the Bushveld and Stillwater Complexes. J. Petrol., 24, 133–65.

    Google Scholar 

  • Dieckmann, R. (1982). Defects and cation diffusion in magnetite (IV): Non-stoichiometry and point defect structure of magnetite: Fe(3-d)O4. Ber. Bunsenges. Phys. Chem., 86, 112–18.

    Google Scholar 

  • Gain, S. B. (1985). The geologic setting of the platiniferous UG-2 chromitite layer on the farm Mandaagshoek, Eastern Bushveld Complex. Econ. Geol., 80, 925–43.

    Article  Google Scholar 

  • Hiemstra, S. A. (1985). The distribution of some platinum-group elements in the UG-2 chromitite layer of the Bushveld Complex. Econ. Geol., 80, 944–57.

    Article  Google Scholar 

  • Ishii, M., Hiraishi, J. & Yamanaka, T. (1982). Structure and lattice vibration of Mg-Al spinel solid solution. Phys. Chem. Minerals, 8, 64–8.

    Article  Google Scholar 

  • Lehmann, J. & Roux, J. (1986). Experimental and theoretical study of (Fe2+, Mg) (Al, Fe3+)2O4 spinels: Activity-composition relationships, miscibility gaps, vacancy contents. Geochim. Cosmochim. Acta, 50, 1765–83.

    Article  Google Scholar 

  • McLaren, C. H. & de Villiers, J. P. R. (1982). The platinum-group chemistry and mineralogy of the UG-2 chromitite layers of the Bushveld Complex. Econ. Geol., 77, 1348–86.

    Article  Google Scholar 

  • Naldrett, A. J. & Cabri, L. J. (1976). Ultramafic and related mafic rocks: Their classification and genesis with special reference to the concentration of nickel sulfides and platinum- group elements. Econ. Geol., 71, 1131–58.

    Article  Google Scholar 

  • Naldrett, A. J. & Duke, J. M. (1980). Tectonic settings of some Ni-Cu sulfide ores: Their importance in genesis and exploration. Geol. Assoc. Can. Spec. Paper 20, pp. 633–57.

    Google Scholar 

  • Naldrett, A. J., Gasparrini, E. C., Barnes, S. J., von Gruenewaldt, G. & Sharpe, M. R. (1986). The upper critical zone of the Bushveld Complex and the origin of Merensky-type ores. Econ. Geol., 81, 1105–17.

    Article  Google Scholar 

  • Naldrett, A. J., Cameron, G. M., von Gruenewaldt, G. & Sharpe, M. R. (1987). The formation of stratiform PGE deposits in Layered Intrusions. In Origins of Igneous Layering, ed. Ian Parsons. NATO Advanced Research Workshop, D. Reidel, Dordrecht, 313–97.

    Google Scholar 

  • Page, N. J & Talkington, R. W. (1984). Palladium, platinum, rhodium, ruthenium and iridium in peridotites and chromitites from ophiolite complexes from Newfoundland. Canaci Mineral., 22, 137–49.

    Google Scholar 

  • Page, N. J, Cassard, D. & Haffty, J. (1982a). Palladium, platinum, rhodium, ruthenium and iridium in chromitites from the Massif du Sud and Tiebaghi Massif, New Caledonia. Econ. Geol., 77, 1571–7.

    Article  Google Scholar 

  • Page, N. J, Pallister, J. S., Brown, M. A., Smewing, J. D. & Haffty, J. (1982b). Palladium, platinum, rhodium, iridium and ruthenium in chromite-rich rocks from the Samail ophiolite, Oman. Canad. Mineral., 20, 537–48.

    Google Scholar 

  • Page, N. J, Aruscavage, P. J. & Haffty, J. (1983). Platinum-group elements in rocks from the Voikar-Syninsky ophiolite complex, Polar Urals, USSR. Mineral. Deposita, 18, 443–55.

    Article  Google Scholar 

  • Page, N. J, Zientek, M. L., Czamanske, G. K. & Foose, M. P. (1985a). Sulfide mineralization in the Stillwater Complex and underlying rocks. In Stillwater Complex, eds. G. K. Czamanske & M. L. Zientek. Montana Bureau of Mines and Geology, Special Publication No. 92, pp. 93–6.

    Google Scholar 

  • Page N. J, Zientek, M. L., Lipin, B. R., Raedeke, L. D., Wooden, J. L., Turner, A. R., Loferski, P. J., Foose, M. P., Moring, B. C. & Ryan, M. P. (1985b). Geology of the Stillwater Complex exposed in the Mountain View area and on the west side of the Stillwater Complex. In Stillwater Complex, eds G. K. Czamanske & M. L. Zientek. Montana Bureau of Mines and Geology, Special Publication No. 92, pp. 147–210.

    Google Scholar 

  • Page, N. J, Singer, D. A., Moring, B. C., Carlson, C. A., McDade, J. M. & Wilson, S. A. (1986). Platinum-group element resources in podiform chromitites from California and Oregon. Econ. Geol., 81, 1261–71.

    Article  Google Scholar 

  • Rajamani, V. & Naldrett, A. J. (1978). Partitioning of Fe, Co, Ni and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu deposits. Econ. Geol., 73, 82–93.

    Article  Google Scholar 

  • Robie, R. A., Hemingway, B. S. & Fisher, J. R. (1978). Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) and at higher temperatures. US Geol. Surv. Bull. 1452.

    Google Scholar 

  • Scott, S. D., Naldrett, A. J. & Gasparrini, E. (1974). Regular solution model for the Fe1-x S-Ni1-x S (mss) solid solution. Int. Min. Assoc. Ninth General Meeting, West Berlin and Regensberg. Collected Abstracts, pp. 172.

    Google Scholar 

  • Toulmin, P. III & Barton, P. B. Jr (1964). A thermodynamic study of pyrite and pyrrhotite. Geochim. Cosmochim. Acta, 28, 641–71.

    Article  Google Scholar 

  • Ulmer, G. C. (1969). Experimental investigation of chromite spinels. Econ. Geol. Mon., 4, 114–31.

    Google Scholar 

  • Viertel, H. U. & Seifert, F. (1980). Thermal stability of defect spinels in the system MgAl2O4-Al2O3. N. Jahrb. Mineral Abh., 140, 89–101.

    Google Scholar 

  • Von Gruenewaldt, G., Hatton, C. J., Merkle, R. K. W. & Gain, S. B. (1986). Platinum- group element-chromitite associations in the Bushveld Complex. Econ Geol., 81 1067–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Naldrett, A.J., Lehmann, J. (1988). Spinel Non-stoichiometry as the Explanation for Ni-, Cu- and PGE-enriched Sulphides in Chromitites. In: Prichard, H.M., Potts, P.J., Bowles, J.F.W., Cribb, S.J. (eds) Geo-Platinum 87. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1353-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1353-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7102-4

  • Online ISBN: 978-94-009-1353-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics