Skip to main content

Three-dimensional Reconstruction and Cross-section Measurements of Coronary Arteries using ECG-Correlated Digital Coronary Arteriography

  • Chapter
Progress in Digital Angiocardiography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 77))

Abstract

The advent of digital image processing has facilitated accurate quantitative analysis of coronary artery morphology [1–7]. To optimally utilize the morphological information available in multi-view cine-angiography and potentially completely replace inaccurate visual determinations of lesion severity [8–13], it is desirable to consolidate the information available into a single densitometric analysis of the arterial tree. In recent years the problem of three-dimensional reconstruction of vascular beds from multi-view angiography has been addressed by several research groups [14–20]. Methodology utilized include the centerline reconstruction methods of Potel et al. [15] and Kim [16], circular reconstructions of Mol et al. [18], the morphologic cross-section reconstructions of Reiber et al. [17] and other multi-view tomographic techniques such as those of Kruger [19] and Mawko [20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown BG, Bolson E, Frimer M, Dodge HT: Quantitative coronary arteriography estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 1977; 55: 329–337.

    PubMed  CAS  Google Scholar 

  2. Sandor T, Spears JR, Paulin S: Densitometric determination of changes in the dimensions of coronary arteries. SPIE 1981; 314: 263–272.

    Google Scholar 

  3. Spears JR, Sandor TS, Als AV, Malagold M, Markis JE, Grossman W, Serur JR, Paulin S: Computerized image analysis for quantitative measurement of vessel diameter from cine-angiograms. Circulation 198; 68: 453–461.

    Article  Google Scholar 

  4. Doriot PA, Rasoamanambelo L, Honegger HP, Merier G, Bopp P, Rutishauser W: Measurement of the degree of coronary stenosis by digital densitometry. Comput Cardiol Sept 1981; 329–332.

    Google Scholar 

  5. Nichols AB, Gabrieli CFO, Fenoglio JJ, Esser PD: Quantification of relative coronary arterial stenosis by cinevideodensitometric analysis of coronary arteriograms. Circulation 1984; 69: 512–522.

    Article  PubMed  CAS  Google Scholar 

  6. Kruger RA: Estimation of the diameter of and iodine concentration within blood vessels using digital radiography devices. Med Phys 1981; 8(5): 652–658.

    Article  PubMed  CAS  Google Scholar 

  7. See, for example, papers 1043, 1044, 1810 and 1813 in the Proceedings, AHA, 1985.

    Google Scholar 

  8. Detre KM, Wright E, Murphy ML, Takaro T: Observer agreement in evaluating coronary angiograms. Circulation 1975; 52: 979.

    PubMed  CAS  Google Scholar 

  9. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW: Interobserver variability in coronary arteriography. Circulation 1976; 53: 627.

    PubMed  CAS  Google Scholar 

  10. DeRouen T, Murray JA, Owen W: Variability in the analysis of coronary arteriograms. Circulation 1977; 55: 324.

    PubMed  CAS  Google Scholar 

  11. Vlodaver Z, Freeh R, Van Tassel RA, Edwards JE: Correlation of the antemortem findings in patients with oronary artery disease and recent myocardial revascularization. Circulation 1973; 47: 162.

    PubMed  CAS  Google Scholar 

  12. Grondin CM, Dyrda I, Pasternac A, Campeau L, Bourassa MG, Lesperance J: Discrepancies between cineangiographic and post-mortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation 1974; 49: 703.

    PubMed  CAS  Google Scholar 

  13. Robbins SL, Rodriguez FL, Wragy AL, Fish SJ: Problems in the quantitation of coronary arteriosclerosis. Am J Cardiol 1966; 18: 153.

    Article  PubMed  CAS  Google Scholar 

  14. MacKay SA, Potel MJ, Rubin JM: Graphics methods for tracking three-dimensional heart wall motion. Comp Biomed Res 1982; 15: 455–473.

    Article  CAS  Google Scholar 

  15. Potel MJ, MacKay SA, Rubin JM, Aisen AM, Sayre RE: Three-dimensional left ventricular wall motion in man, coordinate systems for representing wall movement direction. Inv Radiol 1984; 19: 499–509.

    Article  CAS  Google Scholar 

  16. Kim HC, Min BG, Lee TS, Lee SJ, Lee CW, Park JH, Han MC: Three-dimensional digital subtraction angiography. IEEE Trans on Med. imaging 1982; MI-1(2): 152–158.

    Article  Google Scholar 

  17. Reiber JHC et al: Three-dimensional reconstruction of coronary arterial segments from two projections. In: Heintzen PH, Brennecke R (eds) Digital imaging and cardiovascular radiology. International symposium, Kiel, 1982.

    Google Scholar 

  18. Mol CR, Burridge JM, Morffew AJ: Three-dimensional graphics display of X-ray angiographic data. Comp Biomed Res 1986; 19: 47–55.

    Article  CAS  Google Scholar 

  19. Kruger’s circular tomography device.

    Google Scholar 

  20. Mawko GM, Peters TM: Iterative 3-D reconstruction of vascular images from a few views: Phantom study results. SPIE 1986; 671: 19–24.

    Google Scholar 

  21. Parker DL, Ppe DL, White KS, Tarbox LR, Marshall HW: Three-dimensional reconstruction of vascular beds. In: Bacharach SL (ed) Information processing in medical imaging; pp 414–430. Martinus Nijhoff, Boston, 1986.

    Google Scholar 

  22. Parker DL, Pope DL, Bree RE van, Desai R: Three-dimensional reconstruction of vascular beds from digital angiographic projections. SPIE 1986; 671: 50–59.

    Google Scholar 

  23. Parker DL, Pope DL, Bree RE van, Marshall HW: Three-dimensional reconstruction of moving arterial beds from digital subtraction angiography. Comp Biomed Res 1987; 20: in press.

    Google Scholar 

  24. Schmueli K, Brody WR, Macovski A: Estimation of blood vessel boundaries in X-ray images. SPIE 1981; 314: 279–286.

    Google Scholar 

  25. Pope DL, Parker DL, Clayton PD, Gustafson DE: Left ventricular border determination using a dynamic search algorithm. Radiology 1985; 155: 513–518.

    PubMed  CAS  Google Scholar 

  26. Pope DL, Parker DL: Automated tracking of the coronary artery tree. Presented at RSNA, 1985.

    Google Scholar 

  27. Pope DL, Parker DL, Gustafson DE, Clayton PD: Dynamic search algorithms in left ventricular border recognition and analysis of coronary arteries. Comput Cardiol Sept 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Parker, D.L., Pope, D.L., Van Bree, R.E., Marshall, H. (1988). Three-dimensional Reconstruction and Cross-section Measurements of Coronary Arteries using ECG-Correlated Digital Coronary Arteriography. In: Heintzen, P.H., Bürsch, J.H. (eds) Progress in Digital Angiocardiography. Developments in Cardiovascular Medicine, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1331-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1331-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7093-5

  • Online ISBN: 978-94-009-1331-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics