Skip to main content

Principles of Fuel Metabolism in Heart Muscle

  • Chapter
Myocardial Energy Metabolism

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 91))

Abstract

The functions of metabolism in the heart are few in number and can be understood without detailed knowledge of elaborate chemical formulas. The primary function of the metabolism of energy-providing substrates is the rapid synthesis of ATP from ADP and inorganic phosphate. Under normal conditions, heart muscle covers its energy needs through the oxidation of glucose, fatty acids, ketone bodies or, to a lesser extent, amino acids. This chapter reviews the mechanisms of metabolic control and fuel selection, as they relate to the function of the heart. Particular emphasis is placed on the interaction between substrates and the control of the citric acid cycle, the final common pathway for all substrates providing reducing equivalents for the respiratory chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin S, Krebs HA: The evolution of metabolic cycles. Nature 291:381–382,1981

    Article  PubMed  CAS  Google Scholar 

  2. Beis A, Sammit VA, Newsholme EA: Activities of 3-hydroxybutyrate dehydrogenase, 3-oxoacid CoA-transferase and acetoacetyl-CoA thiolase in relation to ketone body utilization in muscles fron vertebrates and invertebrates. Eur J Biochem 104:209–215, 1980

    Article  PubMed  CAS  Google Scholar 

  3. Bing RJ: The metabolism of the heart. Harvey Lectures 50:27–70, 1955

    CAS  Google Scholar 

  4. Bing RJ, Siegel A, Ungar I, Gilbert M: Metabolism of the human heart. 2. Studies on fat, ketone and amino acid metabolism. Am J Med 16:504–515, 1954

    Article  PubMed  CAS  Google Scholar 

  5. Bittl JA, Shine KI: Protection of ischemic rabbit myocardium by glutamic acid. Am J Physiol 245:H406–H412, 1983

    PubMed  CAS  Google Scholar 

  6. Borst P: Hydrogen transport and transport of metabolites. In: Karlson P, ed: Funktionelle and morphologische Organisation der Zelle. Berlin: Springer Verlag, 1963:137–158

    Google Scholar 

  7. Bremer J, Wojtczak AB: Factors controlling the role of fatty acid beta-oxidation in rat liver mitochondria. Biochim Biophys Acta 280:515–530, 1972

    PubMed  CAS  Google Scholar 

  8. Brosnan JT, Reid K: Inhibition of palmitoylcarnitine oxidation by pyruvate in rat heart mitochondria. Metabolism 34:588–593, 1985

    Article  PubMed  CAS  Google Scholar 

  9. Chance B, Williams GR: Respiratory enzymes in oxidative phosphorylation. J Biol Chem 217:382–397, 1955

    Google Scholar 

  10. Cohen P: Control of enzyme activity. London: Chapman & Hall, 1976

    Google Scholar 

  11. Cohen P: The hormonal control of glycogen metabolism in mammalian muscle by multisite phosphorylation. Biochem Soc Trans 7:459–480, 1979

    PubMed  CAS  Google Scholar 

  12. Cooney GJ, Taegtmeyer H, Newsholme EA: Tricarboxylic acid cycle flux and enzyme activities in the isolated working rat heart. Biochem J 200:701–703, 1981

    PubMed  CAS  Google Scholar 

  13. Cori GT, Colowick SP, Cori CF: The action of nucleotides in the disruptive phosphorylation of glycogen. J Biol Chem 123:381–389, 1938

    CAS  Google Scholar 

  14. Cruickshank EWH, Kosterlitz HW: The utilization of fat by the aglycaemic mammalian heart. J Physiol (Lond) 99:208–223, 1941

    CAS  Google Scholar 

  15. Denton RM, Halestrap AP: Regulations of pyruvate metabolism in mammalian tissues. Essays Biochem 15:37–77, 1979

    PubMed  CAS  Google Scholar 

  16. Drake AJ, Haines JR, Noble MIM: Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 14:65–72, 1980

    Article  PubMed  CAS  Google Scholar 

  17. Garland PB: Some kinetic properties of pig heart oxoglutarate dehydrogenase that provide a basis for metabolic control of the enzyme activity. Biochem J 92:10C–11C, 1964

    PubMed  CAS  Google Scholar 

  18. Goodale WT, Hackel DB: Myocardial carbohydrate metabolism in normal dogs, with effects of hyperglycemia and starvation. Circ Res 1:509–517, 1953

    PubMed  CAS  Google Scholar 

  19. Goodale WT, Olson RE, Hackel DB: The effects of fasting and diabetes mellitus on myocardial metabolism in man. Am J Med 27:212–220, 1959

    Article  PubMed  CAS  Google Scholar 

  20. Hom FG, Goodner CJ, Berne MA: A (3H)2-deoxyglucose method for comparing rates of glucose metabolism and insulin repsonses among rat tissues in vivo. Diabetes 33:141–152, 1984

    Article  PubMed  CAS  Google Scholar 

  21. Idell-Wenger JA, Neely JR: Regulation of uptake and metabolism of fatty acids by muscle. In: Dietschry JM, Gotto AM Jr, Omtko JA, eds: Disturbances in lipid and lipoprotein metabolism. Bethesda: American Physiological Society, 1978:269–284

    Google Scholar 

  22. Kerbey AL, Randle PJ, Cooper RH, Whitehouse S, Pask HT, Denton RM: Regulation of pyruvate dehydrogenase in rat heart. Biochem J 154:327–348, 1976

    PubMed  CAS  Google Scholar 

  23. Kobayashi K, Neely JR: Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 44:166–175, 1979

    PubMed  CAS  Google Scholar 

  24. Krebs EG, Fischer EH: The Phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta 20:150–157, 1956

    Article  PubMed  CAS  Google Scholar 

  25. Krebs HA: Control of metabolic processes. Endeavour 16:125–132, 1957

    CAS  Google Scholar 

  26. Krebs HA: Some aspects of the regulation of fuel supply in omnivorous animals. Adv Enzyme Regul 10:397–420, 1972

    Article  PubMed  CAS  Google Scholar 

  27. Krebs HA, Lowenstein JM: The tricarboxylic acid cycle. In: Greenberg DM, ed: Metabolic pathways. Vol 1. New York: Acad Press, 1960:129–202

    Google Scholar 

  28. LaNoue KF, Bryla J, Williamson JR: Feedback interactions in the control of citric acid cycle activity in rat heart mitochondria. J Biol Chem 247:667–679, 1972

    PubMed  CAS  Google Scholar 

  29. LaNoue KF, Schoolwerth AC: Metabolite transport in mitochondria. Annu Rev Biochem 48:871–922, 1979

    Article  PubMed  CAS  Google Scholar 

  30. McGarry JD, Foster DW: Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 49:395–420, 1980

    Article  PubMed  CAS  Google Scholar 

  31. McGarry JD, Leatherman GF, Foster DW: Carnitine palmitoyl transferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem 253:4128–4136, 1978

    PubMed  CAS  Google Scholar 

  32. McGarry JD, Mills SE, Long CS, Foster DW: Observation on the affinity for carnitine and malonyl-CoA sensitivity of carnitine palmitoyl transferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in nonhepatic tissues of the rat. Biochem J 214:21–28, 1983

    PubMed  CAS  Google Scholar 

  33. Mochizuki S, Neely JR: Control of glyceraldehyde-3-phosphate dehydrogenase in cardiac muscle. J Mol Cell Cardiol 11:221–236, 1979

    Article  PubMed  CAS  Google Scholar 

  34. Morgan HE, Henderson MJ, Regen DM, Park CR: Regulation of glucose uptake in muscle. 1. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rat. J Biol Chem 236:253–261, 1961

    PubMed  CAS  Google Scholar 

  35. Morgan HE, Neely JR: Insulin and membrane transport. In: Steiner DF, Freinkel N, eds: Handbook of physiology. Washington: American Physiological Society, 1972:323–331

    Google Scholar 

  36. Neely JR, Bowman RH, Morgan HE: Effects of ventricular pressure development and palmitate on glucose transport. Am J Physiol 216:804–811, 1969

    PubMed  CAS  Google Scholar 

  37. Neely JR, Grotyohann LW: Role of glycolytic products in damage to ischemic myocardium. Dissociation of ATP levels and recovery of function of reperfused ischemic hearts. Circ Res 55:816–824, 1984

    PubMed  CAS  Google Scholar 

  38. Neely JR, Liebermeister H, Battersby EJ, Morgan HE: Effeacts of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 212:804–814, 1967

    PubMed  CAS  Google Scholar 

  39. Neely JR, Liebermeister H, Morgan HE: Effect of pressure development on membrane transport of glucose in isolated rat heart. Am J Physiol 212:815–822, 1967

    PubMed  CAS  Google Scholar 

  40. Neely JR, Morgan HE: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459, 1974

    Article  PubMed  CAS  Google Scholar 

  41. Newsholme EA, Crabtree B: Theoretical principles in the approach to control of metabolic pathways and their application to glycolysis in muscle. J Mol Cell Cardiol 11:839–856, 1979

    Article  PubMed  CAS  Google Scholar 

  42. Newsholme EA, Leech AR: Biochemistry for the medial sciences. Chichester: Wiley, 1983

    Google Scholar 

  43. Nuutinen EM, Peuhkurinen KJ, Pietilainen EP, Hiltunen JK, Hassinen IE: Elimination and replenishment of tricarboxylic acid cycle intermediates in myocardium. Biochem J 194:867–875, 1981

    PubMed  CAS  Google Scholar 

  44. Olson MS, Dennis SC, DeBuysere MS, Padma A: The regulation of pyruvate dehydrogenase in the isolated perfused rat heart. J Biol Chem 253:7369–7375, 1978

    PubMed  CAS  Google Scholar 

  45. Oram JF, Bennetch SL, Neely JR: Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem 248:5299–5309, 1973

    PubMed  CAS  Google Scholar 

  46. Pande SV, Parvin R: Pyruvate and acetoacetate transport in mitochondria: a reappraisal. J Biol Chem 253:1565–1573, 1978

    PubMed  CAS  Google Scholar 

  47. Peuhkurinen KJ, Hassinen IE: Pyruvate carboxylation as an anaplerotic mechanism in the isolated perfused rat heart. Biochem J 202:67–76, 1982

    PubMed  CAS  Google Scholar 

  48. Randle PJ: Regulation of glycolysis and pyruvate oxidation in cardiac muscle. Circ Res 38, Suppl 1:I8–I12, 1976

    PubMed  CAS  Google Scholar 

  49. Randle PJ, England PJ, Denton RM: Control of the tricarboxylate cycle and its interactions in rat heart. Biochem J 117:677–695, 1970

    PubMed  CAS  Google Scholar 

  50. Randle PJ, Garland PB, Hales CN, Newsholme EA: The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789, 1963

    Article  PubMed  CAS  Google Scholar 

  51. Randle PJ, Garland PB, Hales CN, Newsholme EA, Denton RM, Pogson CI: Interactions of metabolism and the physiological role of insulin. Rec Progr Hormone Res 22:1–41, 1966

    CAS  Google Scholar 

  52. Randle PJ, Tubbs PK: Carbohydrate and fatty acid metabolism. In: Berne RM, Sperelakis N, Geiger SR, eds: The handbook of physiology. Vol I, Sect 1. The cardiovascular system. Bethesda: American Physiological Society, 1979:805–844

    Google Scholar 

  53. Robison GA, Butcher RW, Sutherland EW: Cyclic AMP. London: Acad Press, 1971

    Google Scholar 

  54. Rothlin ME, Bing R: Extraction and release of individual free fatty acids by the heart and fat deposits. J Clin Invest 40:1380–1385, 1961

    Article  PubMed  CAS  Google Scholar 

  55. Rovetto MJ, Lamerton WF, Neely JR: Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 37:742–751, 1975

    PubMed  CAS  Google Scholar 

  56. Rudolph W, Maas D, Ritcher J, Hasinger F, Hoffman H, Dohm P: Ueber die Bedeutung von Acetoacetat und beta-Hydroxybutyrat im Stoffwechsel des menschlichen Herzens. Klin Wschr 43:445–451, 1965

    Article  PubMed  CAS  Google Scholar 

  57. Safer B, Smith CM, Williamson JR: Control of the transport of reducing equivalents across the mitochondrial membrane in perfused rat heart. J Mol Cell Cardiol 2:111–124, 1971

    Article  PubMed  CAS  Google Scholar 

  58. Safer B, Williamson JR: Mitochondrial-cytosolic interactions in perfused rat heart. J Biol Chem 248:2570–2579, 1973

    PubMed  CAS  Google Scholar 

  59. Scrutton MC: Regulation of metabolism in complex organisms. In: Kent PW, ed: New approaches to genetics. London: Oriel Press, 1978:157–178

    Google Scholar 

  60. Shipp JC, Opie LH, Challoner D: Fatty acid and glucose metabolism in the perfused heart. Nature 189:1018–1019, 1961

    Article  CAS  Google Scholar 

  61. Skinner JE, Bedes SD, Entman ML: Psychological stress activates phosphorylase in the heart of conscious pig without increasing heart rate and blood pressure. Proc Natl Acad Sci (USA) 80:4513–4517, 1983

    Article  CAS  Google Scholar 

  62. Srere PA: Controls of citrate synthase activity. Life Sci 15:1695–1710, 1974

    Article  PubMed  CAS  Google Scholar 

  63. Taegtmeyer H: Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles. Circ Res 43:808–815, 1978

    PubMed  CAS  Google Scholar 

  64. Taegtmeyer H: On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res Cardiol 78:435–450, 1983

    Article  PubMed  CAS  Google Scholar 

  65. Taegtmeyer H: Six blind men explore an elephant: Aspects of fuel metabolism and the control of tricarboxylic acid cycle activity in heart muscle. Basic Res Cardiol 79:322–336, 1984

    Article  PubMed  CAS  Google Scholar 

  66. Taegtmeyer H, Ferguson AG, Lesch M: Protein degradation and amino acid metabolism in autolyzing rabbit myocardium. Exp Mol Pathol 26:52–62, 1977

    Article  PubMed  CAS  Google Scholar 

  67. Taegtmeyer H, Hems R, Krebs HA: Utilization of energy-providing substrates in the isolated working rat heart. Biochem J 186:701–711, 1980

    PubMed  CAS  Google Scholar 

  68. Taegtmeyer H, Passmore JM: Defective energy metabolism of the heart in diabetes. Lancet 1: 139–141, 1985

    Article  PubMed  CAS  Google Scholar 

  69. Taegtmeyer H, Peterson MB, Ragavan W, Ferguson AG, Lesch M: De novo alanine synthesis in isolated oxygen deprived rabbit myocardium. J Biol Chem 252:5010–5018, 1977

    PubMed  CAS  Google Scholar 

  70. Ungar I, Gilbert M, Siegel A, Blain JM, Bing RJ: Studies on myocardial metabolism. IV. Myocardial metabolism in diabetes. Am J Med 18:385–396, 1955

    Article  PubMed  CAS  Google Scholar 

  71. Williamson DH, Bates MW, Page MA, Krebs HA: Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem J 121:41–47, 1971

    PubMed  CAS  Google Scholar 

  72. Williamson JR, Krebs HA: Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J 80:540–542, 1961

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Taegtmeyer, H. (1988). Principles of Fuel Metabolism in Heart Muscle. In: De Jong, J.W. (eds) Myocardial Energy Metabolism. Developments in Cardiovascular Medicine, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1319-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1319-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7087-4

  • Online ISBN: 978-94-009-1319-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics