Skip to main content

Biophysics of Ultrafiltration and Hemofiltration

  • Chapter
Replacement of Renal Function by Dialysis

Abstract

Removal of excess body water is an important function of both the artificial kidney and peritoneal dialysis. More recently, solute removal in conjunction with ultrafiltration has been exploited as an alternative to diffusion as a means for cleaning uremic blood. This chapter deals with the practical and theoretical aspects of ultrafiltration and convective mass transfer across the artificial kidney and peritoneal mass transfer barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spiegier KS, Kadern O: Transport coefficients and salt rejection in uncharged hyperfiltration membranes. Desalination 1: 311, 1966

    Article  Google Scholar 

  2. Villarroel F, Klein E, Holland F: Solute flux in hemodialysis and hemofiltration membranes. Trans Am Soc Artif Intern Organs 23: 225, 1977

    PubMed  CAS  Google Scholar 

  3. Dedrick RL, Flessner MF, Collins JM, Schultz JS: Commentary: Is the peritoneum a membrane? asaio J 5:1, 1982

    Google Scholar 

  4. Flessner MF, Dedrick RL, Schultz JS: A distributed model of peritoneal - plasma transport: Theoretical considerations. Am J Physiol 246: R597, 1984

    PubMed  CAS  Google Scholar 

  5. Leypoldt JK, Parker HR, Frigon RP, Henderson LW: Molecular size dependence of peritoneal transport. J Lab Clin Med 110: 207, 1987

    PubMed  CAS  Google Scholar 

  6. Nolph KD, Mactier R, Khanna R, Twardowski ZJ, Moore H, McGary T: The kinetics of ultrafiltration during peritoneal dialysis: The role of the lymphatics. Kidney Int 32: 219, 1987

    Article  PubMed  CAS  Google Scholar 

  7. Rubin J, Nolph KD, Popovich RP, Moncrief JW, Prowant B: Drainage volume during continuous ambulatory peritoneal dialysis. asaio J 2: 54, 1979

    Google Scholar 

  8. Durbin RP: Osmotic flow of water across permeable cellulose membranes. J Gen Physiol 44: 315, 1960

    Article  PubMed  CAS  Google Scholar 

  9. Henderson LW: The problem of peritoneal membrane area and permeability. Kidney Int 3: 409, 1973

    Article  PubMed  CAS  Google Scholar 

  10. Pyle WK, Moncrief JW, Popovich RP: Peritoneal transport evaluation in CAPD. in CAPD Update; Continuous Ambulatory Peritoneal Dialysis, edited by Moncrief JW, Popovich RP, New York, Masson Publ USA Inc, 1981, p 35

    Google Scholar 

  11. Henderson LW, Nolph KD: Altered permeability of the peritoneal membrane after using hypertonic peritoneal fluid. J Clin Invest 48: 922, 1969

    Article  Google Scholar 

  12. Nolph KD, Hano JE, Teschan PE: Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med 70: 931, 1969

    PubMed  CAS  Google Scholar 

  13. Brown ST, Ahearn DJ, Nolph KD: Potassium removal with peritoneal dialysis. Kidney Int 4: 67, 1973

    Article  PubMed  CAS  Google Scholar 

  14. Rubin J, Klein E, Bower JD: Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis. asaio J 5: 9, 1982.

    Google Scholar 

  15. Nolph KD, Miller FN, Pyle WK, Popovich RP, Sorkin MI: An hypothesis to explain the ultrafiltration characteristics of peritoneal dialysis. Kidney Int 20: 543, 1981

    Article  PubMed  CAS  Google Scholar 

  16. Bell JL, Leypoldt JK, Frigon RP, Henderson LW: Heteroporosity model of peritoneal transport is not supported by hydraulically-driven convective transport. Kidney Int 33: 243, 1988

    Google Scholar 

  17. Nolph KD, Twardowski ZJ: The peritoneal dialysis system, in Peritoneal Dialysis, 2nd edition, edited by Nolph KD, Martinus Nijhoff, The Hague, 1985, p 23

    Google Scholar 

  18. Green DM, Antwiler GD, Moncrief JW, Decherd JF, Popovich RP: Measurement of the transmittance coefficient spectrum of Cuprophan and RP 69 membranes: Applications to middle molecule removal via ultrafiltration. Trans Am Soc Artif Intern Organs 22: 627, 1976

    PubMed  CAS  Google Scholar 

  19. Henderson LW: Redy or not. asaio J 2: 49, 1979

    CAS  Google Scholar 

  20. Nolph KD, Stoltz ML, Carter CB, Fox M, Maher JF: Factors affecting the composition of ultrafiltrate from hemodialysis coils. Trans Am Soc Artif Intern Organs 16: 495, 1970

    PubMed  CAS  Google Scholar 

  21. Donnan FG: Theory of membrane equilibria. Chem Reviews 1: 73, 1924–25

    Article  Google Scholar 

  22. Ramenofsky JA, Prestidge H, Ford C, Sanfelippo ML, Henderson LW: Novel applications for hemofiltration membranes. Trans Am Soc Artif Intern Organs 27: 613, 1981

    PubMed  CAS  Google Scholar 

  23. Schmidt M, Baldamus CA, Schoeppe W: Back filtration in hemodialyzers with highly permeable membranes. Blood Purif 2: 108, 1984

    Article  Google Scholar 

  24. Colton CK, Smith KA, Merrill EW, Friedman S: Diffusion of urea in flowing blood. Am Inst Chem Engineering J 17: 800, 1971

    CAS  Google Scholar 

  25. Nolph KD, Fox M, Maher JF: Factors affecting the ultrafiltration rate from standard dialysis coils. Trans Am Soc Artif Intern Organs 16: 487, 1970

    PubMed  CAS  Google Scholar 

  26. Henderson LW: Symptomatic hypotension during hemodialysis. Kidney Int 17: 571, 1980

    Article  PubMed  CAS  Google Scholar 

  27. Henderson LW: Heterogeneity of cardiovascular response to hemofiltration. Kidney Int 29: 901, 1986

    Article  PubMed  CAS  Google Scholar 

  28. Henderson LW, Chenoweth D: Biocompatibility of artificial organs: An overview. Blood Purif 5: 100, 1987

    Article  PubMed  CAS  Google Scholar 

  29. Shaldon S, Baldamus CA, Koch KM, Lysaght MJ: Of sodium, symptomatology and syllogism. Blood Purif 1: 16, 1983

    Article  Google Scholar 

  30. Wehle B, Asaba H, Castenfors J, Fürst P, Gunnarson B, Shaldon S, Bergström J: Hemodynamic changes during sequential ultrafiltration and dialysis. Kidney Int 15: 411, 1979

    Article  PubMed  CAS  Google Scholar 

  31. Hampl H, Paeprer H, Unger V, Kessel M: Hemodynamic studies during hemodialysis in comparison to sequential ultrafiltration and hemofiltration. J Dial 3: 51, 1979

    PubMed  CAS  Google Scholar 

  32. Chen WT, Chaignon M, Omvik P, Tarazi RC, Bravo EL, Nakamoto S: Hemodynamic studies in chronic hemodialysis patients with hemofiltration/ultrafiltration. Trans Am Soc Artif Intern Organs 24: 662, 1978

    Google Scholar 

  33. Quellhorst E, Schuenemann B, Hildebrand U, Falda Z: Response of the vascular system to different modifications of haemofiltration and haemodialysis. Proc Eur Dial Transplant Assoc 17: 197, 1980

    PubMed  CAS  Google Scholar 

  34. Saxenhofer H, Gnadinger MP, Weidmann P, Shaw S, Schohn D, Hess C, Uehlinger DE, Jahn H: Plasma levels and dialysance of atrial natriuretic peptide in terminal renal failure. Kidney Int 32: 554, 1987

    Article  PubMed  CAS  Google Scholar 

  35. Mactier RA, Khanna R, Twardowski ZJ, Nolph KD: Role of the peritoneal cavity lymphatic absorption in peritoneal dialysis. Editorial review, Kidney Int 32: 165, 1987

    Article  PubMed  CAS  Google Scholar 

  36. Mistry CD, Mallick NP, Gokal R: Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges. Lancet 2: 178, 1987

    Article  PubMed  CAS  Google Scholar 

  37. Husted FC, Nolph KD, Vitale FC, Maher JF: Detrimental effects of ultrafiltration on diffusion in coils. J Lab Clin Med 87: 435, 1976

    PubMed  CAS  Google Scholar 

  38. Colton CK, Henderson LW, Ford CA, Lysaght MJ: Kinetics of hemodiafiltration. I. In vitro transport characteristics of a hollow fiber blood ultrafilter. J Lab Clin Med 85: 355, 1975

    PubMed  CAS  Google Scholar 

  39. Henderson LW, Colton CK, Ford C: Kinetics of hemodiafiltration. II. Clinical characterization of a new blood cleansing modality. J Lab Clin Med 85: 372, 1975

    PubMed  CAS  Google Scholar 

  40. Henderson LW: Peritoneal ultrafiltration dialysis: enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 45: 950, 1966

    Article  PubMed  CAS  Google Scholar 

  41. Babb AL, Johansen PJ, Strand MJ, Tenckhoff H, Scribner BH: Bidirectional permeability of the human peritoneum to middle molecules. Proc Eur Dial Transpl Assoc 10: 247, 1973

    CAS  Google Scholar 

  42. Randerson DH, Farrell PC: Mass transfer properties of the human peritoneum, asaio J 3: 140, 1980

    Google Scholar 

  43. Andreoli TE, Schafer JA, Troutman SL: Coupling of solute and solvent flows in porous lipid bilayer membranes. J Gen Physiol 57: 479, 1971

    Article  PubMed  CAS  Google Scholar 

  44. Blatt WF, Dravid A, Michaels AS, Nelson L: Solute polarization and cake formation in membrane ultrafiltration: Causes, consequences and control techniques, in Membrane Science and Technology, edited by Flinn JE, New York, Plenum Corporation, 1970, p 47

    Google Scholar 

  45. Colton CK: Permeability and transport studies in batch and flow dialyzers with application to hemodialysis. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1969

    Google Scholar 

  46. Carone FA, Banks DB, Post RS: Micropuncture study of albumin excretion in the normal rat. Am J Physiol 55: 19A, 1969

    Google Scholar 

  47. Pust AH, Leypoldt JK, Frigon RP, Henderson LW: Peritoneal dialysate volume determined by indicator dilution measurements. Kidney Int 33: 64, 1988

    Article  PubMed  CAS  Google Scholar 

  48. Leypoldt JK, Pust AH, Frigon RP, Henderson LW: Dialysate volume measurements required for determining peritoneal solute transport. Kidney Int 34: 254, 1988

    Article  PubMed  CAS  Google Scholar 

  49. Flessner MF, Parker RJ, Sieber SM: Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 244: H89, 1983

    Google Scholar 

  50. Rippe B, Stelin G, Ahlem J: Lymph flow from the peritoneal cavity in CAPD patients, in Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich and Assoc, 1986, p 24

    Google Scholar 

  51. Okazaki M, Yoshida F: Ultrafiltration of blood: Effect of hematocrit on ultrafiltration rate. Ann Biomed Eng 4: 138, 1976

    Article  PubMed  CAS  Google Scholar 

  52. Lysaght MJ, Ford CA, Colton CK, Stone RA, Henderson LW: Mass transfer in clinical blood ultrafiltration devices - a review, in Technical Aspects of Renal Dialysis, edited by Frost TH, Tunbridge Wells, UK, Pitman Medical Publ Co, 1978, p 81

    Google Scholar 

  53. Henderson LW, Leypoldt JK, Frigon RP: The impact of membrane area on solute clearance in continuous arteriovenous hemofiltration. in Proc Int Symp on Continuous Arteriovenous Hemofiltration, edited by La Greca G, Fabris A, Ronco C, Milan, Wichtig Editore, 1986, p 37

    Google Scholar 

  54. Leypoldt JK, Frigon RP, Henderson LW: Macromolecular charge effects hemofilter solute sieving. Trans Am Soc Artif Intern Organs 32: 384, 1986

    CAS  Google Scholar 

  55. Leypoldt JK, Frigon RP, Okamoto S, Henderson LW: Macrosolute charge independent of sign decreases sieving coefficient. Abstract 5th Annu Mtg Int Soc Blood Purification. Blood Purif (in press) 1988

    Google Scholar 

  56. Frigon RP, Leypoldt JK, Alford MF, Uyeji S, Henderson LW: Hemofilter solute sieving is not governed by dynamically polarized protein. Trans Am Soc Artif Intern Organs 30: 486, 1984

    PubMed  CAS  Google Scholar 

  57. Cheung AK, Alford MF, Wilson MM, Leypoldt JK, Henderson LW: Urea movement across erythrocyte membrane during artificial kidney treatment. Kidney Int 23: 866, 1983

    Article  PubMed  CAS  Google Scholar 

  58. Frost TH, Kerr DNS: Kinetics of hemodialysis: A theoretical study of the removal of solutes in chronic renal failure compared to normal health. Kidney Int 12: 41, 1977

    Article  PubMed  CAS  Google Scholar 

  59. Lysaght MJ, Schmidt B, Gurland HJ: Filtration rates and pressure driving forces in AV filtration. Blood Purif 1: 178, 1983

    Article  Google Scholar 

  60. Schneider NS, Geronemus RP: Continuous arteriovenous hemodialysis. Kidney Int 33 (Suppl 24): S 159, 1988

    Google Scholar 

  61. Leber HW, Wizemann V, Goubeaud G, Rawer P, Schutterle G: Simultaneous hemofiltration/hemodialysis: An effective alternative to hemofiltration and conventional hemodialysis in the treatment of uremic patients. Clin Nephrol 9: 115, 1978

    PubMed  CAS  Google Scholar 

  62. von Albertini B, Miller JH, Gardner PW, Shinaberger JH: High flux hemodiafiltration: Under six hours per week treatment. Trans Am Soc Artif Intern Organs 30: 227, 1984

    Google Scholar 

  63. Miller JH, von Albertini B, Gardner BW, Shinaberger JH: Technical aspects of high flux hemodiafiltration for adequate short [under two hours] treatment. Trans Am Soc Artif Intern Organs 30: 377, 1984.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Henderson, L.W. (1989). Biophysics of Ultrafiltration and Hemofiltration. In: Maher, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1087-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1087-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6979-3

  • Online ISBN: 978-94-009-1087-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics