Skip to main content

Structural Stability of Intermetallic Compounds: A Computational Metallurgical Approach

  • Chapter
Alloy Phase Stability

Part of the book series: NATO ASI Series ((NSSE,volume 163))

Abstract

The driving force behind the research reported here is the recognition that technological advances depend strongly on a thorough understanding of the thermodynamic, mechanical, and electronic properties of materials. These, in turn, depend on our predictive ability regarding these properties. Understanding the structure and stability of the phases of compounds and alloys is an area of vital importance to materials science and technology. Such an understanding is starting to emerge from our first steps into carrying out all-electron quantum mechanical investigations on materials of aerospace interest. Briefly put, our emphasis has been on obtaining an understanding of the effects of alloying on bonding, crystal structure and phase stability of structural materials and to use this information to help design new alloy systems — in close collaboration with experimental efforts at a number of laboratories. In this paper, a brief indication is given of the progress made in a number of illustrative areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohn, W. and L.J. Sham, Phys. Rev., 1965, 140, A1133

    Article  MathSciNet  ADS  Google Scholar 

  2. Westbrook, J.H., ed. Intermetallic Compounds (Wiley, New York, 1967)

    Google Scholar 

  3. Aoki, K. and O. Izumi, Nippon Kinzok Takkaishi, 1979, 43, 1190

    Google Scholar 

  4. Liu, C.T. and C.C. Koch, in Proceedings of a Public Workshop on Trends in Critical Materials Requirements for Steels of the Future: Conservation and Substitution Technology for Chromium (NBSIR-83-2679-2, Washington, DC, June 1983)

    Google Scholar 

  5. Bernhoeft, N.R., I. Cole, G.G. Lonzarich, and G.L. Squires, J. Appl. Phys., 1982, 53, 8207

    Article  ADS  Google Scholar 

  6. Sigfusson, T.I., N.R. Bernhoeft and G.G. Lonzarich, J. Appl. Phys., 1982, 53, 8207

    Article  ADS  Google Scholar 

  7. Sigfusson, T.I., N.R. Bernhoeft, and G.G. Lonzarich, J. Phys., 1984, F14, 2141 and references therein.

    Article  ADS  Google Scholar 

  8. Hackenbracht, D. and J. Kubler, J. Phys., 1980, F10, 427

    Article  ADS  Google Scholar 

  9. Buiting, J.J.M., J. Kubler, and F.M. Mueller, J. Phys., 1983, F13, L179

    Article  ADS  Google Scholar 

  10. Min, B.I., T. Oguchi, H.J.F. Jansen, and A.J. Freeman, J. Mag. Magn. Matls., 1986, 54–57, 1091

    Article  Google Scholar 

  11. Xu, J.-H., T. Oguchi, and A.J. Freeman, Phys. Rev. (in press) about the substitution of V in Ni3Al and the structural stability of Ni3 (Al, V).

    Google Scholar 

  12. Andersen, O.K., Phys. Rev., 1975, B12, 3060

    ADS  Google Scholar 

  13. Xu, J-H., A.J. Freeman and T. Oguchi, (to be published)

    Google Scholar 

  14. Westbrook, J.H., Ordered Alloys, Physical Metallurgy and Structural Applications, Claitors, Baton Rouge (1970), p. 1; Dimiduk, D.M., Solid Solution Strengthening of Ordered Ni3Al, (unpublished).

    Google Scholar 

  15. Xu, J.-H., T. Oguchi, and A.J. Freeman. Phys. Rev., 1987. B35. 6940

    ADS  Google Scholar 

  16. Decker, R.F. and J.R. Mihalisin, Trans. ASM, 1969. 62, 481

    Google Scholar 

  17. Hong, T., T.J. Watson-Yang, A.J. Freeman and T. Oguchi, Bull. Am. Phys. Soc, 1987, 32, No. 3, p. 413

    Google Scholar 

  18. Podloucky, R., H.J.F. Jansen, X.Q. Guo and A.J. Freeman, Phys. Rev. B., (to appear)

    Google Scholar 

  19. Kikuchi, R., Phys. Rev., 1951. 81, 988

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. See, eg., D. de Fontaine in “Alloy Phase Diagrams”, eds. L.H. Bennett, T.B. Massalski, and B.C. Giessen (North-Holland, 1983), p. 149

    Google Scholar 

  21. Freeman, A.J., C.L. Fu, and J.I. Lee, Bull. Am. Phys. Soc., 1987, 32, No. 3, p. 772.

    Google Scholar 

  22. Xu, J.-H., A.J. Freeman, and T. Oguchi, (to be published)

    Google Scholar 

  23. Veyssiere, P., Phil. Mag. 50, 189 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Freeman, A.J. (1989). Structural Stability of Intermetallic Compounds: A Computational Metallurgical Approach. In: Stocks, G.M., Gonis, A. (eds) Alloy Phase Stability. NATO ASI Series, vol 163. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0915-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0915-1_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6901-4

  • Online ISBN: 978-94-009-0915-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics