Skip to main content

Atmospheric 14C Variations: A Bayesian Prospect

  • Chapter
Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 39))

  • 649 Accesses

Abstract

The time spectrum of variations in the atmospheric radiocarbon inventory is reviewed. According to conventional analysis (discrete Fourier transform, periodogram, and maximum entropy or MEM), the spectrum is characterized by features at ~ 2200, 900, 700, 207, 149, and 88 years as well possibly at other frequencies. Model fitting of sinusoids using the Bretthorst algorithm confirms most of these and places their periods on a more secure basis. The forcings of the spectral features are known to be seated in some combination of ocean-atmosphere interaction, the Sun, and the terrestrial magnetic field, but some specific line assignments are still regarded as tentative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attolini, M.R., M. Galli, and T. Nanni, Long and short cycles in solar activity during the last millennium, in “Secular, Solar, and Geomagnetic variations in the last 10,000 years”, pp.49–68. eds. Stephenson and Wolfendale, Kluwer (1988).

    Google Scholar 

  • Becker, B. and B. Kromer, Extension of the Holocene dendrochronology by the preboreal pine series, Radiocarbon, calibration issue, 28, 961–968 (1986).

    Google Scholar 

  • Bracewell, R.N., The Fourier Transform and Its Applications, 2nd Ed., McGraw-Hill (1978).

    MATH  Google Scholar 

  • Bretthorst, L.G., Bayesian Spectrum Analysis and Parameter Estimation, vol. 48, Lecture Notes in Statistics, eds. J. Berger, S. Fienberg, J. Gani, K. Krickeberg, and B. Singer, Springer-Verlag (1988).

    Google Scholar 

  • Bretthorst, G.L., An introduction to parameter estimation using Bayesian probability theory, preprint (1989).

    Google Scholar 

  • Creer, K., Geomagnetic field anilradiocarbon activity through Holocene time, in “Secular, Solar, and Geomagnetic variations in the last 10,000 years”, Stephenson and Wolfendale (1988).

    Google Scholar 

  • Damon, P.E. and C.P. Sonett, Solar and Terrestrial Components of the Atmospheric Variation Spectrum, in “The Sun in Time”, eds. C.P. Sonett, M.S. Giampapa, and M.S. Matthews, Univ. Arizona Press (in press).

    Google Scholar 

  • Damon, P.E., J.C. Lerman, and A. Long, Temporal fluctuations of atmospheric 14C: causal factors and implications, Ann. Rev. Earth Planet. Sci., 6, 457–494 (1978).

    Article  Google Scholar 

  • Damon, P.E., Production and decay of radiocarbon and its modulation by geomagnetic field-solar activity changes with possible implications for global environment, pp. 267–285 in “Secular solar and geomagnetic variations in the last 10,000 years”, eds. F.R. Stephenson and A.W. Wolfendale, Kluwer Acad. Publ. (1988).

    Google Scholar 

  • Damon, P.E. and T. W. Linick, Geomagnetic-heliomagnetic modulation of atmospheric radiocarbon production, in Intl. radiocarbon conference, 12th Proc., eds. M. Stuiver and R. Kra, Radiocarbon, 28, 266–278 (1986).

    Google Scholar 

  • Dansgaard, W., S.J. Johnsen, H.B. Clausen, D. Dahl-Jensen, N. Gunderstrup, C. Hammer, and H. Oeschger, North Atlantic climate oscillations revealed by deep Greenland ice cores, in “Climate Processes and Climate Sensitivity”, pp. 288–298 AGU Maurice Ewing series, eds. J.E. Hansen, and Takahashi (1984).

    Chapter  Google Scholar 

  • Dansgaard, W., S.S. Johnsen, H.B. Clausen, and C.C. Langway, Climatic record revealed by the Camp Century ice core, in “The Late Cenozoic Glacial Ages”pp. 37–46, ed. K. Turekian, Yale Univ. Press (1971).

    Google Scholar 

  • de Vries, H., Variations in concentration of radiocarbon with time and location on Earth, Proc. K. Ned. Akad. Wet. Ser. B, 61, 94 (1958).

    Google Scholar 

  • de Vries, H., Measurement and use of natural radiocarbon. In “Researches in Geochemistry”, ed. P.H. Abelson, pp.169–189, (1959).

    Google Scholar 

  • de Jong, A.F.M. and W.G. Mook, Medium-term atmospheric 14C variations, Radiocarbon, 22, 267–272 (1980).

    Google Scholar 

  • Dilke, F. W. W. and D.O. Gough, The Solar Spoon, Nature, 240, 262–294 (1972).

    Article  Google Scholar 

  • Elsasser, W., E.P. Ney, and J.R. Winckler, Cosmic-ray intensity and geomagnetism, Nature, 178, 1226 (1956).

    Article  Google Scholar 

  • Ferguson, C.W. and D.A. Greybill, Dendrochronology of Bristlecone pine: A progress report, Radiocarbon, 25, pp.287–288 (1983).

    Google Scholar 

  • Feynman, J. and P. Fougere, Eighty year cycle in solar terrestrial phenomena confirmed, J. Geophys. Res., 89, p. 2032 (1985).

    Google Scholar 

  • Gough, D.O., Theory of solar variation, in “Solar-Terrestrial Relationships and the Earth Environment in the last Millennia”, pp. 90–132, Proc. Enrico Fermi Intl. School of Physics, course XCV, ed. G. Cini Castagnoli, North-Holland (1988).

    Google Scholar 

  • Hammer, C., H.B. Clausen, W. Dansgaard, N. Grunddestrup, S.S. Johnsen, and N. Reeh, Dating of Greenland ice cores by flow models, isotopes, volcanic debris, and continental dust, J. Glaciology, 20, pp. 3–26 (1978).

    Google Scholar 

  • Houtermans, J.C., Geophysical interpretation of bristlecone pine radiocarbon measurements using a method of Fourier analysis of unequally spaced data, Ph.D. thesis, Univ. Berne (1971).

    Google Scholar 

  • Houtermans, J.C., H.E. Suess, and H. Oeschger, Reservior models and production rate variations of natural radiocarbon, J. Geophys. Res., 78, 1897–1908 (1973).

    Article  Google Scholar 

  • Jaynes, E.T., “Papers on Probability, Statistics, and Statistical Physics”, a reprint collection, D. Reidel (1983).

    MATH  Google Scholar 

  • Johnsen, S.J., W. Dansgaard, and H.B. Clausen, Climatic oscillations 1200–2000 AD, Nature, 227, 482–483 (1970).

    Article  Google Scholar 

  • Lederer, C.M., J.M. Hollander, and I. Perlman, “Table of Isotopes”, 6th ed., John Wiley, New York (1967).

    Google Scholar 

  • Linden, D.A., A discussion of sampling theorems, Proc. IRE, 47, p.1219 (1959).

    Article  Google Scholar 

  • Lingenfelter, R. E. and R. Ramaty, Astrophysical and geophysical variations in C-14 production, Astrophysical and geophysical variations in 14C production, in “Nobel symposium XII: Radiocarbon Variations and Absolute Chronology”, pp. 513–537, Almquist and Wiksells, Uppsala (1970).

    Google Scholar 

  • Linick, T.W., H.E. Suess, and B. Becker, La Jolla measurements of radiocarbon in south German oak tree-ring chronologies, Radiocarbon, 27, pp. 20–32 (1985).

    Google Scholar 

  • Linick, T.W., A. Long, P.E. Damon, and C.W. Ferguson, High-precision radiocarbon dating of Bristlecone pine from 6554–5350 BC, Radiocarbon, calibration issue, 28, 943–953 (1986).

    Google Scholar 

  • McElhinny, M.W. and W.E. Senanayake, Variations in the geomagnetic dipole: the past 50,000 years, Geomag. Geoelect, 34, p.39 (1982).

    Article  Google Scholar 

  • Neftel, A., H. Oeschger, and H.E. Suess, Secular non-random variations of cosmogenic carbon-14 in the terrestrial atmosphere, Earth, Planet. Sci. Lett., 56, 127 (1981).

    Google Scholar 

  • O’Brien, K., M.A. Shea, D.F. Smart, and A. de la Zerda Lerner, The production in the Earth’s atmosphere of cosmogenic isotopes and their inventories, in “The Sun in Time”, eds. C.P. Sonett, M.S. Giampapa, and M.S. MAtthews, Univ. of Arizona Press (in press).

    Google Scholar 

  • Pearson, G.W., J.R. Pilcher, M.G.L. Baillie, D.M. Corbett, and F. Qua, High-precision 14C measurements of Irish oaks to show the natural 14C variations from AD 1840–5120 BC, in Intl. Radiocarbon Conf., 12th Proc. pp. 911–934, eds. M. Stuiver and R. Kra, Radiocarbon 28, no.2B (1986).

    Google Scholar 

  • Pearson, G.W. and M. Stuiver, High-precision calibration of the radiocarbon time scale, 500–2500 BC, Radiocarbon, calibration issue, 28, 839–862 (1986).

    Google Scholar 

  • Pestiaux, P., I van der Mersch, and A. Berger, Paleoclimatic variability at frequencies ranging from 1 cycle per 0000 years to 1 cycle per 000 years: evidence for nonlinear behavior of the climate system, Climate Change, 12, 9–37 (1988).

    Article  Google Scholar 

  • Siscoe, G. L., Evidence in the auroral record for secular solar variations, Rev. Geophys. Spa. Phys., 18, pp. 647–658 (1980).

    Article  Google Scholar 

  • Sonett, C.P., Multirate sampling and generalized alias as a source of errors in magnetometer experiments, IEEE Trans., GE-6, 3 (1968).

    Google Scholar 

  • Sonett, C.P. and H.E. Suess, Correlation of Bristlecone pine ring widths with atmospheric carbon-14 variations: a climate-Sun relation, Nature, 307, pp. 141–143 (1984).

    Article  Google Scholar 

  • Sonett, C.P., Suess ‘Wiggles’ — A comparison between radiocarbon records, Meteoritics, 20, 383–394 (1985).

    Google Scholar 

  • Sonett, C.P. and S.A. Finney, The spectrum of radiocarbon, Phil. Trans, Royal Soc., London (in press).

    Google Scholar 

  • Sonett, C.P., Very long solar periods and the radiocarbon record, Rev. Geophys. Spa. Phys., 22, 239–254 (1984).

    Article  Google Scholar 

  • Stuiver, M. and P.D. Quay, Changes in atmospheric carbon-14 attributed to a variable Sun, Science, 207, 11, (1980).

    Article  Google Scholar 

  • Stuiver, M., Variations in radiocarbon concentration and sunspot activity, J. Geophys. Res., 66, 273–276 (1961).

    Article  Google Scholar 

  • Stuiver, M., Carbon-14 content of 18th and 19th century wood; variations correlated with sunspot activity, Science, 149, pp. 533–535 (1965).

    Article  Google Scholar 

  • Stuiver, M. and G.W. Pearson, High-preciosion calibration of the radiocarbon time scale, AD 1950–500BC, in Radiocarbon, calibration issue, 28, 805–838, (1986).

    Google Scholar 

  • Suess, H.E., Bristlecone pine calibration of the radiocarbon time scale 5200 BC to the present, pp/ 303–311, in 12th Nobel symposium, ed. I.U. Ollson, Wiley (1970).

    Google Scholar 

  • Suess, H.E., La Jolla measurements of radiocarbon in tree ring-dated wood, Radiocarbon, 20, pp. 1–18 (1978).

    Google Scholar 

  • Suess, H.E., The radiocarbon record in tree rings of the last 8000 years, in Intl. 14 C conf., 10th Proc., eds M. Stuiver and R. Kra, Radiocarbon 3, 1–4 (1980).

    Google Scholar 

  • Suess, H.E., Secular variations of cosmogenic 14C on Earth: their discovery and interpretation, Radiocarbon, 28, 259–265 (1986).

    Google Scholar 

  • Suess, H.E., Climate changes, solar activity, and cosmic-ray production rate of natural radiocarbon, Meteorol. Monographs 8, 146–150 (1968).

    Google Scholar 

  • Wallace, J.M. and R.E. Dickenson, Empirical orthogonal representation of time series in the frequency domain. Part I: theoretical considerations, J. Applied Meteor., 11, 887–892 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sonett, C.P. (1990). Atmospheric 14C Variations: A Bayesian Prospect. In: Fougère, P.F. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0683-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0683-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6792-8

  • Online ISBN: 978-94-009-0683-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics