Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 315))

Abstract

It is the purpose of this short note to highlight perhaps unexpected connections between the topics described in the papers [G2] and [HW1] in this volume, and at the same time between various papers within a series of joint publications [FG1-8] with K.Groechenig on the two topics indicated in the title: Algorithms that allow to recover a function (or tempered distribution) f from a suitable family of coefficients, which arise as integrals of f against a countable coherent family of functions (such as Heisenberg or affine frames) and the problem of reconstructing a band-limited function from a (sufficiently rich) set of irregularly taken sampling values. As will be pointed out in detail below the basic observation, which may be taken as an explanation of most common results for these two settings, concerns properties of functions which arise as convolution products with nice, integrable functions on a locally compact group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bastiaans, M.J.: Signal description by means of local frequency spectrum SPIE 373, Trans.in Opt. Sign. Proc. (1981), 49–62

    Google Scholar 

  2. Butzer, P. W.SplettstoBerR.L.Stens (1988): The sampling theorem and linear prediction in signal analysis. Jber.d.Dt.Math.-Ver. 90, 1–70

    MATH  Google Scholar 

  3. Daubechies, I: The wavelet transform, time-frequency localization and signal analysis.

    Google Scholar 

  4. Daubechies,I: Frames of coherent states, phase space localization, and signal analysis, preprint.

    Google Scholar 

  5. Daubechies, I: Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909–996

    Article  MathSciNet  MATH  Google Scholar 

  6. Daubechies, I. and A.Grossmann: Frames in the Bargmann space of entire functions.

    Google Scholar 

  7. Daubechies, I., A. Grossmann and Y.Meyer: Painless on-orthogonal expansions. J. Math. Phys. 27 (1986), 1271–1283.

    Article  MathSciNet  MATH  Google Scholar 

  8. Duffin, R; and A.Schaeffer: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341–366.

    MathSciNet  MATH  Google Scholar 

  9. Feichtinger H.G.: Banach convolution algebras of Wiener’s type. “Functions, Series, Operators”, Proc. Conf., Budapest 1980, Coll. Soc. Janos Bolyai, North Holland, 1983, 509–524

    Google Scholar 

  10. Feichtinger H.G: Discretization of convolution and reconstruction of band-limited functions from irregular sampling. J. Approx. Theory, to appear.

    Google Scholar 

  11. Feichtinger H.G: Nonorthogonal expansions using the Heisenberg group, with applications to signal analysis. Techn. Report, prepared for a talk presented at AT&T Bell Labs. Murray Hill, April 1988

    Google Scholar 

  12. Feichtinger H.G: An elementary approach to the generalized Fourier transform, in “Topics in Mathematical Analysis”, World Sci. Publ., Ed. Th.Rassias, Athens, 1989; in honor of Cauchy, 200nd anniversary

    Google Scholar 

  13. Feichtinger, H.G.,K. Grochenig: A unified approach to atomic characterizations via integrable group representations. Proc. Conf. Lund June 1986, Ed. M.Cwikel et al, Springer Lect. Notes 1302, (1988), 52–73

    Google Scholar 

  14. Feichtinger, H.G.,K. Grochenig: Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal., to appear, 1989

    Google Scholar 

  15. Feichtinger, H.G.,K. Grochenig: Banach spaces related to integrable group representations and their atomic decompositions, II. Monatsh. f. Mathematik, to appear. 1990.

    Google Scholar 

  16. Feichtinger, H.G.,K. Grochenig: Non-orthogonal expansions of signals and some of their applications. Proc. ECMI conference, Strobl, Mai 1989.

    Google Scholar 

  17. Feichtinger, H.G.,K. Grochenig:Reconstruction of band-limited functions from irregular sampling values (1989). To appear.

    Google Scholar 

  18. Feichtinger, H.G.,K. Grochenig:Multidimensional irregular sampling of band-limited functions in LP-spaces, Proc. Conf. Oberwolfach, Feb. 1989, ISNM, Birkhauser Publ., 1989.

    Google Scholar 

  19. Feichtinger, H.G.,K. Grochenig:Irregular sampling theorems and series expansions of band- limited functions I (1989), to appear.

    Google Scholar 

  20. Feichtinger, H.G.,K. Grochenig: Irregular sampling theorems and series expansions of band-limited functions II. (stability results and error analysis), in preparation

    Google Scholar 

  21. Frazier, M.,B.Jawerth: Decomposition of Besov spaces. Indiana Univ. Math. J. 34 (1985), 777–799.

    Article  MathSciNet  MATH  Google Scholar 

  22. Frazier, M.,B.Jawerth:The ϕ-transform and decompositions of distribution spaces, Proc. Conf. “Functions Spaces and Applications”, Lund 1986, Lect. Notes Math. 1302, Springer, Heidelberg, 1988

    Google Scholar 

  23. Gröchenig, K.H: Describing functions: Atomic decompositions versus frames, to appear.

    Google Scholar 

  24. Gröchenig, K.H: A new approach to irregular sampling; this volume.

    Google Scholar 

  25. Grossmann, A. J. Morlet and T.Paul: Transforms associated to square integrable group representations I, J. Math. Phys. 26 (1985), 2473–2479.

    Article  MathSciNet  MATH  Google Scholar 

  26. Heil, C., D. Walnut: Continuous and Discrete wavelet transform. To appear in SIAM Rev., 1989.

    Google Scholar 

  27. Heil, C., D. Walnut: Gabor and wavelet expansions. This volume.

    Google Scholar 

  28. Higgins, J.R: Five short stories about the cardinal series. Bull. Amer. Math. Soc. 12(1985), 45–89

    Article  MathSciNet  MATH  Google Scholar 

  29. Jerri, A. J.: The Shannon sampling theorem - its various extensions and applications, a tutorial review. Proc. IEEE 65 (1977), 45–89.

    Article  Google Scholar 

  30. Lemarié, P. Y.Meyer: Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2 (1986), 1–18.

    MathSciNet  Google Scholar 

  31. Meyer, Y.: De la recherche petroliere a la geometrie des espaces de Banach en passant par les paraproduits.Sem. Equ. Der. Part. 1985/86, Ecole Polytechn. Paris

    Google Scholar 

  32. Meyer, Y.: Principe d’incertitude, bases hilbertiennes et algébres d’opérateurs. Sém. Bourbaki 662 (1985–86)

    Google Scholar 

  33. Papoulis, A: Error analysis in sampling theory. Proc. of the IEEE 54/7 (1966), 947–955

    Article  Google Scholar 

  34. Young, R: An Introduction to Nonharmonic Fourier Series. Acad. Press, New York, 1980.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Feichtinger, H.G. (1990). Coherent Frames and Irregular Sampling. In: Byrnes, J.S., Byrnes, J.L. (eds) Recent Advances in Fourier Analysis and Its Applications. NATO ASI Series, vol 315. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0665-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0665-5_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6784-3

  • Online ISBN: 978-94-009-0665-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics