Skip to main content

Calcium and Calmodulin during Carrot Somatic Embryogenesis

  • Chapter
The Impact of Biotechnology on Agriculture

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 8))

Abstract

Carrot somatic embryogenesis has been used extensively as a model system for the study of control mechanisms of plant embryo-genesis. Ca2+ and the Ca2+ binding protein calmodulin play a fundamental role in the control of plant growth and development. During plant embryogenesis especially important is the role of Ca2+ in the regulation of cell polarity, cell growth, mitosis and cytokinesis, cell volume, plant hormone action and distribution, and enzyme activation. Carrot somatic embryos develop in culture on clusters of small cytoplasm rich cells. They progress through the successive stages of globular, heart shaped, and torpedo shaped embryos, comparable with zygotic embryogenesis. The process is influenced by several exogenous factors such as light quality and medium composition.

Calcium and calmodulin both possess a number of chemical and physical properties which makes them very suitable as intracellular messengers in the regulation of embryogenesis. The involvement of Ca2+ and calmodulin can be studied with various techniques. Of great importance is the measurement of the cytoplasmic Ca2+ concentration and the determination of its distribution. In this paper a summary of methods for the three forms of Ca2+ (free cytoplasmic, bound to membrane surfaces or intracellular chelating molecules, and sequestered inside subcellular organelles) which are applicable to the system of carrot somatic embryogenesis, will be presented.

High concentrations of external Ca2+ has proven to be promotive for carrot somatic embryogenesis. Embryogenesis increases upon transfer to a medium with a elevated concentration of Ca2+, regardless of the initial concentration. Somatic embryos possess a higher concentration of bound calcium, which is mainly localized in the outer cell layers, as compared with proembryogenic masses. Activated calmodulin is unevenly distributed in all stages of carrot somatic embryogenesis. In the globular and heart stage activated calmodulin is restricted to the basal part of the embryo. In old torpedo shaped stages activated calmodulin is also present in the shoot apex. From these observations it is concluded that Ca2+ and calmodulin are important for the initiation of polarity during carrot somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.M. (1983) Purification of calmodulin, Methods Enzymol. 102, 9–17.

    PubMed  CAS  Google Scholar 

  • Anderson, J.M., Charbonneau, H., Jones, H.P., McCann, R.O., Cormier, M.J. (1980) Characterization of the plant nicotinamide adenine dinucleotide kinase activator protein and its identification as a calmodulin. Biochemistry 19, 3113–3120.

    PubMed  CAS  Google Scholar 

  • Ashley, C.C., Campbell, A.K. (1979) Detection and measurement of free Ca2+ in cells. Elsevier/North-Holland Biomedical Press, Amsterdam, New York, Oxford.

    Google Scholar 

  • Bhojwani, S.S., Razdan, M.K. (1983) Plant tissue culture: Theory and practice. Elsevier, Amsterdam, Oxford, New York, Tokyo, pp. 91–112.

    Google Scholar 

  • Biro, R.L., Daye, S., Serlin, B.S., Terry, M.E., Datta, N., Sopory, S.K., Roue, S.J. (1984) Characterization of oat calmodulin and radio immunoassay of its cellular distribution. Plant Physiol. 75, 382–386.

    PubMed  CAS  Google Scholar 

  • Blinks, J.R., Mattingly, P.H., Jewell, B.R., Van Leeuwen, M., Harrer, G.C., Allen, D.G. (1978) Practical aspects of the use of aequorin as a calcium indicator: Assay preparation, microinjection and interpretation of signals. Methods Enzymol. LVII, 292–328.

    Google Scholar 

  • Blowers, D.P., Trewavas, A.J. (1989) Second messengers: Their existence and relationship to protein kinases, in Boss, W.F., Morre, D.J. (eds.) Second messengers in plant growth and development. Alan R. Liss. Inc., New York, pp. 1–28.

    Google Scholar 

  • Borle, A.B., Freudenrich, C.C., Snowdowne, K.W. (1986) A simple method for incorporating aequorin into mammalian cells. Am. J. Physiol. 251, C323–C326.

    PubMed  CAS  Google Scholar 

  • Borle, A.B., Snowdowne, K.W. (1987) Methods for the measurement of intracellular ionized calcium ions in mammalian cells: Comparison of four classes of Ca2+ indicators, in Cheung, W.Y. (ed.) Calcium and cell function, vol. VII, Academic Press, New York, pp. 159–200.

    Google Scholar 

  • Brand, J.J., Becker, D.W. (1984) Evidence for direct roles of calcium in photosynthesis. J. Bioenerg. Biomembr. 16, 239–248.

    PubMed  CAS  Google Scholar 

  • Brownlee, C., Wood, J.W., Briton, D. (1987) Cytoplasmic free calcium in single cells of centric diatoms. The use of fura-2. Protoplasma 140, 118–122.

    CAS  Google Scholar 

  • Buckhout, T.J. (1984) Characterization of Ca2+ transport in purified endoplasmic reticulum membrane vesicles from Lepidium sativumL. roots. Plant Physiol. 76, 962–967.

    PubMed  CAS  Google Scholar 

  • Caswell, A.H. (1979) Methods of measuring intracellular calcium. Int. Rev. Cytol. 56, 145–181.

    PubMed  CAS  Google Scholar 

  • Cotton, G., Vanden Driesche, T. (1987) Identification of calmodulin in Acetabularia: Its distribution and physiological significance. J. Cell Sci. 87, 337–347.

    CAS  Google Scholar 

  • Das, R., Bagga, S., Sopory, S.K. (1987) Involvement of phosphoino- sitides, calmodulin and glyoxlase I in cell proliferetion in callus cultures of Amaranthus paniculatus. Plant Sci. 53, 45–51.

    CAS  Google Scholar 

  • Das, R., Sharma, A.K., Sopory, S.K. (1989) Regulation of NADH-glutama- tedehydrogenase activity by phytochrome, calcium and calmodulin in Zea mays. Plant Cell Physiol. 30, 317–323.

    CAS  Google Scholar 

  • Dauwalder, M., Roux, S.J., Hardison, L. (1986) Distribution of calmodulin in pea seedlings. Immunocytochemical localization in plumules and root apices. Planta 168, 461–470.

    PubMed  CAS  Google Scholar 

  • Dedman, J.R., Potter, J.D., Jackson, R.L., Johnson, J.D., Means, A.R. (1977) Physicochemical properties of rat testis Ca2+ -dependent regulator protein of cyclic phosphodiesterase: Relationship of Ca2+ -binding, conformational changes and phosphodiesterase activity. J. Biol. Chem. 252, 8415–8422.

    PubMed  CAS  Google Scholar 

  • Dela Fuente, R.K. (1984) Role of calcium in the polar secretion of indoleacetic acid. Plant Physiol. 76, 342–346.

    Google Scholar 

  • De Vries, S.C., Booij, H., Janssens, R., Vogels, R., Saris, L., LoSchiavo, F., Terzi, M., Van Kammen, A. (1988a) Carrot somatic embryogenesis depends on the phytohormone-controlled presence of correctly glycosylated extracellular proteins. Genes & Development 2, 462–476.

    Google Scholar 

  • De Vries, S.C., Booij, H., Meyerink, P., Huisman,…G., Dayton Wilde, H., Thomas, T.L., Van Kammen, A. (1988b). Acquisition of embryogenic potential in carrot cell suspension cultures. Planta 176, 196–204.

    Google Scholar 

  • Dieter, P. (1984) Calmodulin and calmodulin mediated processes in plants. Plant Cell and Environment 7, 371–380.

    CAS  Google Scholar 

  • Dieter, P., Marme, D. (1980) Ca2+ transport in mitochondrial and microsomal fractions from higher plants. Planta 150, 1–8.

    CAS  Google Scholar 

  • Elliot, D.C. (1986) Calcium involvement in plant hormone action, in Trewavas, A.C. (ed.) Molecular and cellular aspects of calcium in plant development. Plenum Press, New York, pp. 285 – 292.

    Google Scholar 

  • Felle, H. (1988) Cytoplasmic free calcium in Riccia fluitansL. and Zea maysL.: Interaction of Ca2+ and pH? Planta 176, 248–255.

    CAS  Google Scholar 

  • Felle, H. (1989) pH as a second messenger in plants, in Boss, W.F., Morre, D.J. (eds.) Second messengers in plant growth and development. Alan R. Liss. Inc., New York, pp. 57–80.

    Google Scholar 

  • Fienberg, A.A., Choi, J.H., Lubick, W.P., Sung, Z.R. (1984) Developmental regulation of polyamine metabolisme in growth and differentiation of carrot culture. Planta 162, 532–539.

    CAS  Google Scholar 

  • Fujimura, T., Komamine, A. (1975) Effects of various growth regulators on the embryogenesis in a carrot cell suspension culture. Plant Sc. Lett. 5, 359–364.

    CAS  Google Scholar 

  • Gilroy, S., Hughes, W.A., Trewavas, A.J. (1989) A comparison between quin-2 and aequorin as indicators of cytoplasmic calcium levels in higher plant cell protoplasts. Plant Physiol. 90, 482–491.

    PubMed  CAS  Google Scholar 

  • Gross, J. (1982) Oxalate-enhanced active calcium-uptake in membrane fractions from zucchini squash, in Marme, D., Marre, E., Hertel, R. (eds.) Plasmalemma and tonoplast: Their functions in the plant cell. Elsevier Biomedical Press, New York, pp. 369–376.

    Google Scholar 

  • Guilfoyle, T.J. (1989) Second messengers and gene expression, in Boss, W.F., Morre, D.J. (eds.) Second messengers in plant growth and development. Alan R. Liss. Inc., New York, pp. 315–326.

    Google Scholar 

  • Haiech, J., Klee, C.B., Demaille, J.G. (1981) Effects of cations on affinity of calmodulin for free calcium: Ordered binding of cal-ciumions allow the specific activation of calmodulin-stimulated enzymes. Biochemistry 20, 3890–3897.

    PubMed  CAS  Google Scholar 

  • Halperin, W. (1966) Alternative morphogenetic events in cell sus- pensions. Amer. J. Bot. 53, 443–453.

    Google Scholar 

  • Halper, W., Jensen, W.A. (1967) Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J. Ultrastruct. Res. 18, 428–443.

    Google Scholar 

  • Hari, V. (1980) Effect of cell density changes and conditioned media on carrot cell embryogenesis. Z. Pflanzenphysiol. 96, 227–231.

    Google Scholar 

  • Hausser, I., Herth, W., Reiss, H.D. (1984) Calmodulin in tipgrowing plant cells, visualized by fluorescing calmodulin binding phenothia- zines. Planta 162, 33–39.

    CAS  Google Scholar 

  • Havelange, A. (1989) Levels and ultrastructural localization of calcium in Sinapis albaduring the floral transition. Plant Cell Physiol. 30, 351 – 358.

    CAS  Google Scholar 

  • Hepler, P.K. (1988) Calcium and development, in Greuter, W., Zimmer, B. (eds.) Proc. XIV Intern. Bot. Congr. Koeltz, Konigstein/Taunus, pp. 225–246.

    Google Scholar 

  • Hepler, P.K., Callaham, D.A. (1987) Free calcium increases during anaphase in stamen hair cells of Tradescantia. J. Cell Biol. 105, 2137–2143.

    PubMed  CAS  Google Scholar 

  • Hepler, P.K., Wayne, R.O. (1985) Calcium and plant development. Ann. Rev. Plant Physiol. 36, 397–439.

    CAS  Google Scholar 

  • Hughes, W.A. (1986) NMR and X-ray micro analysis methods for measurement of calcium in plant cells, in Trewavas, A.J. (ed.) Molecular and cellular aspects of calcium in plant development. Plenum Press, New York, London, pp. 157–164.

    Google Scholar 

  • Janssen, M.A.K., Kreuger, M., Booij, H., Schel, J.H.N., De Vries, S.C., Van Kammen, A. (1989) The role of calcium and calmodulin in early stages of carrot somatic embryogenesis. Submitted.

    Google Scholar 

  • Jones, R.L., Deikman, J., Melroy, D. (1986) Role of Ca2+ in the regulation of α-amylase synthesis and secretion in barley aleurone, in Trewavas, A.C. (ed.) Molecular and cellular aspects of calcium in plant development. Plenum Press, New York, London, pp. 49–56.

    Google Scholar 

  • Kaesser, W., Koyro, H.W., Moor, H. (1989) Cryofixation of plant tissue without pretreatment. J. Microsc. 154, 279–288.

    Google Scholar 

  • Kakiuchi, S., Sobue, K. (1983) Control of cytoskeleton by calmodulin and calmodulin-binding proteins. Trends Biochem. Sci. 8, 59–62.

    Google Scholar 

  • Kauss, J. (1983) Volume regulation-activation of a membrane associated cryptic enzyme system by detergent-like action of phenothiazine drugs. Plant Sci. Lett. 26, 103–109.

    Google Scholar 

  • Kauss, H. (1987) Some aspects of calcium dependent regulation in plant metabolism. Ann. Rev. Plant Physiol. 38, 47–72.

    Google Scholar 

  • Kohlenbach, H.W. (1978) Comparative somatic embryogenesis, in Thorpe, T.A. (ed.) Frontiers of plant tissue culture. Univ. Calgary Press, Canada, pp. 59–66.

    Google Scholar 

  • Kotenko, J.L., Miller, J.H. Robinson, A.I. (1987) The role of asymmetric cell division in Pteridophyte cell differentiation. I. Localized metal accumulation and differentiation in Vittariagemmae and Onocleaprothallia. Protoplasma 136, 81–95.

    CAS  Google Scholar 

  • Kretsinger, R.H. (1979) The information role of calcium in the cytosol. Adv. Cyclic Nuc. Res. 11, 1–26.

    CAS  Google Scholar 

  • Kretsinger, R.H. (1980) Structure and evolution of calcium modulated proteins. Crit. Rev. Biochem. 8, 119–174.

    CAS  Google Scholar 

  • Leshem, Y.Y. (1987) Membrane phospholipid catabolisme and Ca activity in control senescence. Physiol. Plant. 69, 551–559.

    CAS  Google Scholar 

  • Levin, R.M., Weiss, B. (1975) Mechanism by which psychotropic drugs inhibit cyclic AMP-phosphodiesterase in brain. Mol. Pharmacol. 12, 581–589.

    Google Scholar 

  • Levin, R.M., Weiss, B. (1977) Binding of trifluperazine to the calcium dependent activator of cyclic AMP-phosphodiesterase. Mol. Pharmacol. 13, 690–697.

    CAS  Google Scholar 

  • Levine, B.A., Williams, R.J.P. (1982) The chemistry of calcium ion and its biological relevance, in Anghileri, L.J., Tuffet-Anghileri, A.M. (eds.) The role of calcium in biological systems 1, CRC Press, Boca Raton, Florida, pp. 3–26.

    Google Scholar 

  • Lin, C.T., Sun, D., Song, G.X., Wu, J.Y. (1986) Calmodulin: Localization in plant tissues. J. Histochem. Cytochem. 34, 561–567.

    PubMed  CAS  Google Scholar 

  • Lukas, T.J., Iverson, D.B., Schleicher, M., Watterson, D.M. (1984) Structural characterization of a higher plant calmodulin: Spinacea oleracea.Plant Physiol. 75, 788–795.

    CAS  Google Scholar 

  • Marme, D. (1989) The role of calcium and calmodulin in signal transduction, in Boss, W.F., Morre, D.J. (eds.) Second messengers in plant

    Google Scholar 

  • \ growth and development. Alan R. Liss. Inc., New York, pp. 57–80.

    Google Scholar 

  • Marme, D., Dieter, P. (1983) Role of Ca2+ and calmodulin in plants, in Cheung, W.Y. (ed.) Calcium and cell function, vol. 4, Academic Press, New York, pp. 263–311.

    Google Scholar 

  • Marshall, A.T. (1980) Freeze-substitution as a preparation technique for biological X-ray microanalysis. Scan. Elec. Microsc. II, 395–408,

    Google Scholar 

  • McGee-Russel, S.M. (1958) Histochemical methods for calcium. J. Histochem. Cytochem. 6, 22–42.

    Google Scholar 

  • McWilliam, A.A., Smith, S.M., Street, H.E. (1974) The origin and development of embryoids in suspension cultures of carrot (Daucus carota). Ann. Bot. 38, 243–250.

    Google Scholar 

  • Means, A.R., Tash, J.S., Chafouleas, J.G. (1982) Physiological implications of the presence, distribution and regulation of calmodulin in eukaryotic cells. Physiol. Rev. 62, 1–38.

    CAS  Google Scholar 

  • Michler, C.H., Lineberger, R.D. (1987) Effects of light on somatic embryo development and abscisic acid levels in carrot suspension cultures. Plant, Cell, Tissue and Organ Culture 11, 189–207.

    Google Scholar 

  • Minta, A., Harootunian, A.T., Kao, J.R.Y., Tsien, R.Y. (1987) New fluorescent indicators for intracellular sodium and calcium. J. Cell Biol. 105, 89a.

    Google Scholar 

  • Mitsui, T., Christeller, J.T., Hara-Nishimura, I., Akazawa, T. (1984) Possible roles of calcium and calmodulin in the biosynthesis and secretion of α-amylase in rice seed scutellar epithelium. Plant Physiol. 75, 21–25.

    PubMed  CAS  Google Scholar 

  • Muto, S., Miyachi, S. (1984) Production of antibody against spinach calmodulin and its application to radioimmunoassay for plant calmodulin. Z. Pflanzenphsyiol. 114, 421–431.

    CAS  Google Scholar 

  • Nomura, K. (1987) Mechanisms of somatic embryogenesis in carrot suspension cultures. Ph.D. thesis. Univ. Tokyo, Japan.

    Google Scholar 

  • Nomura, K., Komamine, A. (1985) Identification and isolation of single cells that produce somatic embryos at a high density frequency in carrot suspension cultures. Plant Physiol. 79, 988–991.

    PubMed  CAS  Google Scholar 

  • Nomura, K., Komamine, A. (1986a) Polarized DNA synthesis and cell division in cell clusters during somatic embryogenesis from single carrot cells. New Phytol. 104, 25–32.

    Google Scholar 

  • Nomura, K., Komamine, A. (1986b) Molecular mechanisms of somatic embryogenesis, in Miflin, B.J. (ed.) Oxford surveys of Plant Molecular and Cell Biology, vol. 3, Oxford University Press, pp. 456–466.

    Google Scholar 

  • Owen, J.H., Hetherington, A.M., Wellburn, A.R. (1987) Calcium, calmodulin and the control of respiration in protoplasts isolated from meristematic tissues by abscisic acid. J. Exp. Bot. 38, 1356–1361.

    CAS  Google Scholar 

  • Penel, C., Greppin, H. (1982) Effect of light and phenothiazines on the level of extracellular peroxidases, in Marme, D., Marre, E., Hertel, R. (eds.) Plasmalemma and tonoplast: Their functions in the plant cell, Elsevier Biomedical Press, New York, pp. 53–57.

    Google Scholar 

  • Poovaiah, B.W. (1985) Role of calcium and calmodulin in plant growth and development. Hort. Science 20, 347–351.

    CAS  Google Scholar 

  • Poovaiah, B.W., McFadden, J.J., Reddy, A.S.N. (1987) The role of calcium ions in gravity signal perception and transduction. Physiol. Plant. 71, 401–407.

    CAS  Google Scholar 

  • Poovaiah, B.W., Leopold, A.C. (1973) Deferral of leaf senescence with calcium. Plant Physiol. 52, 236–239.

    PubMed  CAS  Google Scholar 

  • Poovaiah, B.W., Reddy, A.S.N. (1987) Calcium messenger systems in plants. CRC-Crit. Rev. Plant Sci. 6, 47–103.

    CAS  Google Scholar 

  • Poovaiah, B.W., Veluthambi, K. (1986) The role of calcium and calmodulin in hormone action in plants: Importance of protein phosphorylation, in Trewavas, A.J. (ed.) Molecular and cellular aspects of calcium in plant development. Plenum Press, New York, pp. 83–90.

    Google Scholar 

  • Prozialeck, W.C., Amino, M., Weiss, B. (1981) Photoaffinity labeling of calmodulin by phenothiazine psychotics. Mol. Pharmacol. 19, 264–269.

    CAS  Google Scholar 

  • Ranjevo, R., Boudet, A.M. (1987) Phosphorylation of proteins in plants: Regulatory effects and potential involvement in stimulus/response coupling. Ann. Rev. Plant Physiol. 38, 73–93.

    Google Scholar 

  • Reinert, J. (1985) Morphogenese und ihre Kontrolle an Gewebekulturen aus Carotten. Naturwissenschaften 45, 344–345.

    Google Scholar 

  • Reis, H.D., Nobiling, R. (1986) Quin-2 fluorescence in lily pollentube: Distribution of free cytoplasmic calcium. Protoplasma 131, 244–246.

    Google Scholar 

  • Roberts, D.M., Lukas, T.J., Watterson, D.M. (1986) Structure, function, and mechanism of action of calmodulin. Crit. Rev. Plant Sci. 4, 311–339.

    CAS  Google Scholar 

  • Roux, S.J., Wayne, R.O., Datta, N. (1986) Role of calcium ions in phytochrome response: an update. Physiol. Plant 66, 344–348.

    CAS  Google Scholar 

  • Satter, R.L., Galston, A.W. (1981) Mechanisms of control of leaf movements. Ann. Rev. Plant Physiol. 32, 83–110.

    CAS  Google Scholar 

  • Schleicher, M., Iversen, D.B., Van Eldik, L.J., Watterson, D.M. (1982) Calmodulin, in Lloyd, C.W. (ed.) The cytoskeleton in plant growth and development. Academic Press, New York, pp. 85–106.

    Google Scholar 

  • Schleicher, M., Lukas, T.J., Watterson, D.M. (1983) Futher characterization of calmodulin from the monocotyledon barley (Hordeum vulgare). Plant Physiol. 73, 666–670.

    PubMed  CAS  Google Scholar 

  • Slay, R.M., Grimes, H.D., Hodges, T.K. (1989) Plasma membrane proteins associated with undifferentiated and embryonic Daucus carota tissue. Protoplasma 150, 139–149,

    Google Scholar 

  • Slocum, R.D., Roux, S.J. (1982) An improved method for the subcellular localization of calcium using a modification of the antimonate precipitation technique. J. Histochem. Cytochem. 30, 617–629.

    PubMed  CAS  Google Scholar 

  • Smith, D.L., Krikorian, A.D. (1988) Production of somatic embryos from carrot tissues in hormone-free medium. Plant Science 58, 103–110.

    Google Scholar 

  • Smith, G.N., Willmer, C.M. (1988) Effects of calcium and abscisic acid on volume changes of guard cell protoplasts of Commelina. J. Exp. Bot. 39, 1529–1539.

    CAS  Google Scholar 

  • Smith, J.A., Sung, Z.R. (1985) Increase in regeneration of plant cells by cross feeding with regenerating Daucus carota cells, in Terzi, M.,

    Google Scholar 

  • Pitto, L., Sung, Z.R. (eds.) Somatic Embryogenesis. IPRA, Rome, pp. 77–85.

    Google Scholar 

  • Snowdowne, K.W., Borle, AB. (1985) Effects of low extracellular sodium on cytosolic ionized calcium. Na+ -Ca2 exchange as a major calcium influx pathway in kidney cells. J. Biol. Chem. 260, 14998–15007.

    PubMed  CAS  Google Scholar 

  • Steer, M.W. (1988) The role of calcium in exocytosis and endocytosis in plant cells. Physiol. Plant. 72, 213–220.

    CAS  Google Scholar 

  • Steward, F.C., Mapes, M.O., Mears, K. (1958) Growth and organized development of cultured cells II. Organization in cultures grown from freely suspended cells. Am. J. Bot. 45: 705–708.

    Google Scholar 

  • Street, H.E., Withers, L.A. (1974) The anatomy of embryogenesis in culture, in Street, H.E. (ed.) Tissue culture and plant science. Academic Press, London, New York, pp. 71–100.

    Google Scholar 

  • Stosic, V., Penel, C., Marme, D., Greppin, H. (1983) Distribution of calmodulin-stimulated Ca transport into membrane vesicles from green spinach leaves. Plant Physiol. 72, 1136–1138.

    PubMed  CAS  Google Scholar 

  • Sung, Z.R., Okimoto, R. (1981) Embryogenie proteins in somatic embryos of carrot. Proc. Nat. Acad. Sci. 78, 3683–3687.

    PubMed  CAS  Google Scholar 

  • Tazawa, M., Reinert, J. (1969) Extracellular and intracellular chemical environment in relation to embryogenesis in vitro. Protoplasma 68, 157–173.

    PubMed  CAS  Google Scholar 

  • Terzi, M., Pitto, L., Sung, Z.R. (1985) Somatic Embryogenesis. IPRA Roma, Italy.

    Google Scholar 

  • Thomas, M.V. (1986) The definition and measurement of intracellular free Ca, in Trewavas, A.J. (ed.) Molecular and cellular aspects of calcium in plant development. Plenum Press, New York, London, pp. 141–147.

    Google Scholar 

  • Timmers, A.C.J., De Vries, S.C., Schel, J.H.N. (1989) Distribution of membrane-bound calcium and activated calmodulin during somatic embryogenesis of carrot (Daucus carota L.). Submitted.

    Google Scholar 

  • Toda, H., Yazawa, M., Sakiyama, F., Yagi, K. (1985) Amino acid sequence of calmodulin from wheat germ. J. Biochem. 98, 833–842.

    PubMed  CAS  Google Scholar 

  • Van Eldik, L.J., Zendegui, J.G., Marshall, D.R., Watterson, D.M. (1982) Calcium binding proteins and the molecular basis of calcium action. Int. Rev. Cytol. 77, 1–61.

    PubMed  Google Scholar 

  • Vantard, M., Lambert, A.M., De Mey, J. Picquot, P. Van Eldik, L.J. (1985) Characterization and immunocytochemical distribution of calmodulin in higher plant endosperm cells: localization in the mitotic apparatus. J. Cell Biol. 101, 488–499.

    PubMed  CAS  Google Scholar 

  • Watterson, D.M., Sharief, F., Vanaman, T.C. (1980) The complete amino acid sequence of the Ca2+ dependent modulator protein (calmodulin) of bovine brain. J. Biol. Chem. 255, 962–975.

    PubMed  CAS  Google Scholar 

  • Wick, S.M., Duniec, J. (1986) Effects of various fixatives on the reactivity of plant cell tubulin and calmodulin in immunofluorescence microscopy. Protoplasma 133, 1–18.

    CAS  Google Scholar 

  • Wilde, H.D., Nelson, W.S., Booij, H., De Vries, S.C., Thomas, TL. (1988) Gene-expression programs in embryogenic and non-embryogenic carrot cultures. Planta 176, 205–211.

    CAS  Google Scholar 

  • Williamson, R.E., Ashley, C.C. (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296, 647–651.

    PubMed  CAS  Google Scholar 

  • You, J.S., Li, S.W., Wang, D.S., Zhang, Y., Suen, D.Y., Xue, S.B. (1988) The distribution of calmodulin and the calmodulin antagonist TFP in cell cycle of the friend erythro-leukemia cells. Abstr. 4th. Int. Congr. Cell Biol. Montreal, p. 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Timmers, A.C.J. (1990). Calcium and Calmodulin during Carrot Somatic Embryogenesis. In: Sangwan, R.S., Sangwan-Norreel, B.S. (eds) The Impact of Biotechnology on Agriculture. Current Plant Science and Biotechnology in Agriculture, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0587-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0587-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6752-2

  • Online ISBN: 978-94-009-0587-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics