Skip to main content

The Superexchange Model for the Primary Charge Separation in Bacterial Photosynthesis

  • Conference paper
Perspectives in Photosynthesis

Abstract

A number of physical phenomena and observables can be accounted for and are consistent with the superexchange mechanism for the primary electron transfer in the reaction centre of Rb.sphaeroides. These include electric field effects on the quantum yield and polarization of the prompt fluorescence, the unidirectionality of the charge separation and the magnetic properties and recombination dynamics of the primary radical pair. A rationalization for the prevalence of the superexchange mechanism in the primary charge separation is provided on the basis of a kinetic optimization criterion in conjunction with energy constraints on the medium reorganization energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin, J.L., Breton, J., Hoff, A.J., Migus, A., and Antonetti, A. (1986) ‘Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rb.sphaeroides R-26: Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8±0.2 psec’ Proc. Natl. Acad. Sci. USA 83, 957–961.

    Article  PubMed  CAS  Google Scholar 

  2. Breton, J., Martin, J.L., Migus, A., Antonetti, A., and Orszag, A. (1986) ‘Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium R.viridis’, Proc. Natl. Acad. Sci. USA 83, 5121–5125.

    Article  PubMed  CAS  Google Scholar 

  3. Fleming, G.R., Martin, J.L., and Breton, J. (1988) ‘Rates of primary electron transfer in photosynthetic reaction centers and their mechanistic implications’, Nature 333, 190–192.

    Article  CAS  Google Scholar 

  4. Michel-Beyerle, M.E., Plato, M., Deisenhofen J., Michel, H., Bixon, M., and Jortner, J. (1988) ‘Unidirectionality of charge separation in reaction centers of photosynthetic bacteria’, Biochim. Biophys. Acta 932, 52–70.

    Article  CAS  Google Scholar 

  5. Bixon, M. and Jortner, J. (1986) ‘Coupling of protein modes to electron transfer bacterial photosynthesis’, J. Phys. Chem. 90, 3795–3800.

    Article  CAS  Google Scholar 

  6. Treutlein, H., Schulten, K., Deisenhofer, J., Michel, H., Branger, A., and Karplus, M. (1988) ‘Molecular dynamics simulation of the primary processes in the photosynthetic reaction center of R.viridis’, in J. Breton and A. Vermeglio (eds.), The Photosynthetic Reaction Center, NATO ASI Series A: Life Sciences, Plenum, New York, pp. 369–377.

    Google Scholar 

  7. Jortner, J. (1976) ‘Temperature dependent activation energy for electron transfer between biological molecules’, J. Chem. Phys. 64, 4860–4867.

    Article  CAS  Google Scholar 

  8. Bixon, M. and Jortner, J. (in press) ‘Activationless and pseudoactivationless primary electron transfer in photosynthetic bacterial reaction centers’, Chem. Phys. Lett.

    Google Scholar 

  9. Efrima, S. and Bixon, M. (1976) ‘Vibrational effects in outer-sphere electron-transfer reactions in polar media’, Chem. Phys. 13, 447–460.

    Article  CAS  Google Scholar 

  10. Plato, M., Möbius, K., Michel-Beyerle, M.E., Bixon, M., and Jortner, J. (1988) Intermolecular electronic interactions in the primary charge separation in bacterial photosynthesis’, J. Am. Chem. Soc. 110, 9279–9285.

    Article  Google Scholar 

  11. Bixon, M., Michel-Beyerle, M.E., and Jortner, J. (1988) ‘Formation dynamics, decay kinetics and singlet-triplet splitting of the (bacteriochlorophyll)+ (bacteriopheophytin)- radical pair in bacterial photosynthesis’, Isr. J. Chem. 28, 155–168.

    CAS  Google Scholar 

  12. Popovic, Z.D., Kovacs, G.J., Vincett, P.S., Alegria, G., and Dutton, P.L. (1986) ‘Electric field dependence of recombination kinetics in reaction centers of photosynthetic bacteria’, Chem. Phys. 110, 227-237.

    Article  CAS  Google Scholar 

  13. Gopher, A., Blatt, Y., Schönfeld, M., Okamura, M.Y., Feher, G., and Montai, M. (1985) ‘The effect of an applied electric field on the charge recombination kinetics in reaction centers reconstructed in planar lipid bilayers’, Biophys. J. 48, 311–320.

    Article  PubMed  CAS  Google Scholar 

  14. Lockhart, D.J. and Boxer, S.G. (1988) ‘Electric field modulation of the fluorescence from Rb.sphaeroides reaction centers’, Chem. Phys. Lett. 144, 243–249.

    Article  CAS  Google Scholar 

  15. Bixon, M. and Jortner, J. (1988) ‘Electric field effects on the primary charge separation in bacterial photosynthesis’, J. Phys. Chem. 92, 7148–7156.

    Article  CAS  Google Scholar 

  16. Lockhart, D.J., Goldstein, R.F., and Boxer, S.G. (1988) ‘Structure-based analysis of the initial electron transfer step in bacterial photosynthesis: Electric field induced fluorescence anisotropy’, J. Chem. Phys. 89, 1408–1415.

    Article  CAS  Google Scholar 

  17. Bixon, M., Jortner, J., Michel-Beyerle, M.E., and Ogrodnik, A. (in press) ‘A superexchange mechanism for the primary charge separation in photosynthetic reaction centers’, Biochim. Biophys. Acta.

    Google Scholar 

  18. Aumaier, W., Uberl, U., Ogrodnik, A., and Michel-Beyerle, M.E. (to be published).

    Google Scholar 

  19. Michel-Beyerle, M.E., Bixon, M., and Jortner, J. (1988) ‘Interrelationship between primary electron transfer dynamics and magnetic interactions in photosynthetic reaction centers’, Chem. Phys. Lett. 151, 188–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this paper

Cite this paper

Bixon, M., Jortner, J., Michel-Beyerle, M.E. (1990). The Superexchange Model for the Primary Charge Separation in Bacterial Photosynthesis. In: Jortner, J., Pullman, B. (eds) Perspectives in Photosynthesis. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0489-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0489-7_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6706-5

  • Online ISBN: 978-94-009-0489-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics